1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kobayashi J: Effect of diet and gut
environment on the gastrointestinal formation of N-nitroso
compounds: A review. Nitric Oxide Biol Chem. 73:66–73. 2018.
View Article : Google Scholar
|
3
|
Rawla P and Barsouk A: Epidemiology of
gastric cancer: Global trends, risk factors and prevention. Prz
Gastroenterol. 14:26–38. 2019.PubMed/NCBI
|
4
|
Yang Z and Klionsky DJ: Eaten alive: A
history of macroautophagy. Nat Cell Biol. 12:814–822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Dikic I and Elazar Z: Mechanism and
medical implications of mammalian autophagy. Nat Rev Mol Cell Biol.
19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
White E: Deconvoluting the
context-dependent role for autophagy in cancer. Nat Rev Cancer.
12:401–410. 2012. View
Article : Google Scholar : PubMed/NCBI
|
7
|
White E: The role for autophagy in cancer.
J Clin Invest. 125:42–46. 2015. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Guzmán EA, Pitts TP, Cristina Diaz MC and
Wright AE: The marine natural product Scalarin inhibits the
receptor for advanced glycation end products (RAGE) and autophagy
in the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Invest
New Drugs. 37:262–270. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim TW, Lee SY, Kim M, Cheon CH and Ko SG:
Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway
and inhibition of G9a in gastric cancer cells. Cell Death Dis.
9:8752018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim SM, Vetrivel P, Ha SE, Kim HH, Kim JA
and Kim GS: Apigetrin induces extrinsic apoptosis, autophagy and
G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS
human gastric cancer cell. J Nutr Biochem. 83:1084272020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bishop KS, Kao CH, Xu Y, Glucina MP,
Paterson RR and Ferguson LR: From 2000 years of Ganoderma
lucidum to recent developments in nutraceuticals.
Phytochemistry. 114:56–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Na K, Li K, Sang TT, Wu KK, Wang Y and
Wang XY: Anticarcinogenic effects of water extract of
sporoderm-broken spores of Ganoderma lucidum on colorectal
cancer in vitro and in vivo. Int J Oncol.
50:1541–1554. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang WF, Gou XH, Xue H and Liu K:
Ganoderan (GDN) regulates the growth, motility and apoptosis of
non-small cell lung cancer cells through ERK signaling pathway in
vitro and in vivo. Onco Targets Ther. 12:8821–8832. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Acevedo-Diaz A, Ortiz-Soto G,
Suarez-Arroyo IJ, Zayas-Santiago A and Martinez Montemayor MM:
Ganoderma lucidum extract reduces the motility of breast
cancer cells mediated by the RAC-Lamellipodin axis. Nutrients.
11:11162019. View Article : Google Scholar
|
15
|
Gao Y, Zhou S, Jiang W, Huang M and Dai X:
Effects of ganopoly (a Ganoderma lucidum polysaccharide
extract) on the immune functions in advanced-stage cancer patients.
Immunol Invest. 32:201–215. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ahmad MF: Ganoderma lucidum:
Persuasive biologically active constituents and their health
endorsement. Biomed Pharmacother. 107:507–519. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chan WK, Lam DT, Law HK, Wong WT, Koo MW,
Lau AS, Lau YL and Chan GC: Ganoderma lucidum mycelium and
spore extracts as natural adjuvants for immunotherapy. J Altern
Complement Med. 11:1047–1057. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu T, Zhou J, Li W, Rong X, Gao Y, Zhao
L, Fan Y, Zhang J, Ji C and Ma Q: Effects of sporoderm-broken
spores of Ganoderma lucidum on growth performance,
antioxidant function and immune response of broilers. Anim Nutr.
6:39–46. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu T, Ma QG, Zhao LH, Jia R, Zhang JY, Ji
C and Wang XY: Protective effects of sporoderm-broken spores of
Ganoderma lucidum on growth performance, antioxidant
capacity and immune function of broiler chickens exposed to low
level of Aflatoxin B1. Toxins. 8:2782016. View Article : Google Scholar
|
20
|
Zhao D, Chang MW, Li JS, Suen W and Huang
J: Investigation of ice-assisted sonication on the microstructure
and chemical quality of Ganoderma lucidum spores. J Food
Sci. 79:E2253–E2265. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Z, Shi YQ, Zhang X, Xu J, Wang H, Zhao
L and Wang Y: Screening imunoactive compounds of Ganoderma
lucidum spores by mass spectrometry molecular networking
combined with in vivo zebrafish assays. Front Pharmacol.
11:2872020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ayyoob K, Masoud K, Vahideh K and
Jahanbakhsh A: Authentication of newly established human esophageal
squamous cell carcinoma cell line (YM-1) using short tandem repeat
(STR) profiling method. Tumour Biol. 37:3197–3204. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li X, Zhao R, Zhou HL and Wu DH:
Deproteinization of polysaccharide from the stigma maydis by sevag
method. Adv Mat Res. 340:416–420. 2011.
|
24
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina
EM, Yan S, Zhao C, Zheng Z, Shu Y, Wu X, et al: Adenovirus-mediated
gene delivery: Potential applications for gene and cell-based
therapies in the new era of personalized medicine. Genes Dis.
4:43–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y
and Song F: Salidroside induces apoptosis and protective autophagy
in human gastric cancer AGS cells through the PI3K/Akt/mTOR
pathway. Biomed Pharmacother. 122:1097262020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cör D, Knez Ž and Knez Hrnčič M:
Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase
effect of Ganoderma lucidum terpenoids and polysaccharides:
A review. Molecules. 23:6492018. View Article : Google Scholar
|
27
|
Kladar NV, Gavarić NS and Božin BN:
Ganoderma: Insights into anticancer effects. Eur J Cancer
Prev. 25:462–471. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Min BS, Nakamura N, Miyashiro H, Bae KW
and Hattori M: Triterpenes from the spores of Ganoderma
lucidum and their inhibitory activity against HIV-1 protease.
Chem Pharm Bull. 46:1607–1612. 1998. View Article : Google Scholar
|
29
|
Su JY, Su L, Li D, Shuai O, Zhang YF,
Liang HJ, Jiao CW, Xu ZC, Lai Y and Xie YZ: Antitumor activity of
extract from the sporoderm-breaking spore of Ganoderma
lucidum: Restoration on exhausted cytotoxic T cell with gut
microbiota remodeling. Front Immunol. 9:17652018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Park JG, Frucht H, LaRocca RV, Bliss DP,
Kurita Y, Chen TR, Henslee JG, Trepel JB, Jensen RT, Johnson BE, et
al: Characteristics of cell lines established from human gastric
carcinoma. Cancer Res. 50:2773–2780. 1990.PubMed/NCBI
|
31
|
Motoyama T, Hojo H and Watanabe H:
Comparison of seven cell lines derived from human gastric
carcinomas. Acta Pathol Jpn. 36:65–83. 1986.PubMed/NCBI
|
32
|
Mattioli E, Vogiatzi P, Sun A, Abbadessa
G, Angeloni G, D'Ugo D, Trani D, Gaughan JP, Vecchio FM, Cevenini
G, et al: Immunohistochemical analysis of pRb2/p130, VEGF, EZH2,
p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expression patterns in
gastric cancer. J Cell Physiol. 210:183–191. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Barati T, Haddadi M, Sadeghi F,
Muhammadnejad S, Muhammadnejad A, Heidarian R, Arjomandnejad M and
Amanpour S: AGS cell line xenograft tumor as a suitable gastric
adenocarcinoma model: Growth kinetic characterization and
immunohistochemistry analysis. Iran J Basic Med Sci. 21:678–681.
2018.PubMed/NCBI
|
34
|
Barranco SC, Townsend CM, Quraishi MA,
Burger NL, Nevill HC, Howell KH and Boerwinkle WR: Heterogeneous
responses of an in vitro model of human stomach cancer to
anticancer drugs. Invest New Drugs. 1:117–127. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li X, He S and Ma B: Autophagy and
autophagy-related proteins in cancer. Mol Cancer. 19:122020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Schaaf MB, Keulers TG, Vooijs MA and
Rouschop KM: LC3/GABARAP family proteins: Autophagy-(un)related
functions. FASEB J. 30:3961–3978. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lamark T, Svenning S and Johansen T:
Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays
Biochem. 61:609–624. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Liang ZE, Yi YJ, Guo YT, Wang RC, Hu QL
and Xiong XY: Inhibition of migration and induction of apoptosis in
LoVo human colon cancer cells by polysaccharides from Ganoderma
lucidum. Mol Med Rep. 12:7629–7636. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sohretoglu D and Huang S: Ganoderma
lucidum polysaccharides as an anti-cancer agent. Anticancer
Agents Med Chem. 18:667–674. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang C, Shi S, Chen Q, Lin S, Wang R, Wang
S and Chen C: Antitumor and immunomodulatory activities of
Ganoderma lucidum polysaccharides in glioma-bearing rats.
Integr Cancer Ther. 17:674–683. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Amaravadi RK, Kimmelman AC and Debnath J:
Targeting autophagy in cancer: Recent advances and future
directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kimura T, Takabatake Y, Takahashi A and
Isaka Y: Chloroquine in cancer therapy: a double-edged sword of
autophagy. Cancer Res. 73:3–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Karasic TB, O'Hara MH, Loaiza-Bonilla A,
Reiss KA, Teitelbaum UR, Borazanci E, De Jesus-Acosta A, Redlinger
C, Burrell JA, Laheru DA, et al: Effect of gemcitabine and
nab-paclitaxel with or without hydroxychloroquine on patients With
Advanced Pancreatic Cancer: A phase 2 randomized clinical trial.
JAMA Oncol. 5:993–998. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sotelo J, Briceño E and López-González MA:
Adding chloroquine to conventional treatment for glioblastoma
multiforme: A randomized, double-blind, placebo-controlled trial.
Ann Intern Med. 144:337–343. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu R, Ji Z, Xu C and Zhu J: The clinical
value of using chloroquine or hydroxychloroquine as autophagy
inhibitors in the treatment of cancers: A systematic review and
meta-analysis. Medicine (Baltimore). 97:e129122018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Pan H, Wang Y, Na K, Wang Y, Wang L, Li Z,
Guo C, Guo D and Wang X: Autophagic flux disruption contributes to
Ganoderma lucidum polysaccharide-induced apoptosis in human
colorectal cancer cells via MAPK/ERK activation. Cell Death Dis.
10:4562019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang W, Lei Z, Meng J, Li G, Zhang Y, He
J and Yan W: Water extract of sporoderm-broken spores of
Ganoderma lucidum induces osteosarcoma apoptosis and
restricts autophagic flux. Onco Targets Ther. 12:11651–11665. 2019.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Oh JM, Kim E and Chun S: Ginsenoside
compound K induces ros-mediated apoptosis and autophagic inhibition
in human neuroblastoma cells in vitro and in vivo. Int J Mol Sci.
20:42792019. View Article : Google Scholar
|
50
|
Kimmelman AC: The dynamic nature of
autophagy in cancer. Genes Dev. 25:1999–2010. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Reis FS, Lima RT, Morales P, Ferreira IC
and Vasconcelos MH: Methanolic extract of Ganoderma lucidum
induces autophagy of AGS human gastric tumor cells. Molecules.
20:17872–17882. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Marino G, Niso-Santano M, Baehrecke EH and
Kroemer G: Self-consumption: The interplay of autophagy and
apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Cooper KF: Till death do us part: The
marriage of autophagy and apoptosis. Oxidative Med Cell Longev.
2018:47012752018. View Article : Google Scholar
|
54
|
Gump JM and Thorburn A: Autophagy and
apoptosis: What is the connection? Trends Cell Biol. 21:387–392.
2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Choi PR, Kang YJ, Sung B, Kim JH, Moon HR,
Chung HY, Kim SE, Park IP, Park MI, Park SJ and Kim ND:
MHY218-induced apoptotic cell death is enhanced by the inhibition
of autophagy in AGS human gastric cancer cells. Int J Oncol.
47:563–572. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yi H, Wang K, Du B, He L, Ho H, Qiu M, Zou
Y, Li Q, Jin J, Zhan Y, et al: Aleuritolic acid impaired autophagic
flux and induced apoptosis in hepatocellular carcinoma HepG2 cells.
Molecules. 23:13382018. View Article : Google Scholar
|
57
|
Kaneko A, Kiryu-Seo S, Matsumoto S and
Kiyama H: Correction: Damage-induced neuronal endopeptidase (DINE)
enhances axonal regeneration potential of retinal ganglion cells
after optic nerve injury. Cell Death Dis. 11:5412020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Yang C, Wu C, Xu DJ, Wang M and Xia Q:
Astragaloside II inhibits autophagic flux and enhances
chemosensitivity of cisplatin in human cancer cells. Biomed
Pharmacother. 81:166–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Jiao YN, Wu LN, Xue D, Liu XJ, Tian ZH,
Jiang ST, Han SY and Li PP: Marsdenia tenacissima extract induces
apoptosis and suppresses autophagy through ERK activation in lung
cancer cells. Cancer Cell Int. 18:1492018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kim HI, Hong SH, Ku JM, Lim YS, Lee SJ,
Song J, Kim TY, Cheon C and Ko SG: Scutellaria Radix promotes
apoptosis in non-small cell lung cancer cells via induction of
AMPK-dependent autophagy. Am J Chin Med. 47:691–705. 2019.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Swanton E, Savory P, Cosulich S, Clarke P
and Woodman P: Bcl-2 regulates a caspase-3/caspase-2 apoptotic
cascade in cytosolic extracts. Oncogene. 18:1781–1787. 1999.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Fulda S and Debatin KM: Extrinsic versus
intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene.
25:4798–4811. 2006. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kirsch DG, Doseff A, Chau BN, Lim DS, de
Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA and Hardwick JM:
Caspase-3-dependent cleavage of Bcl-2 promotes release of
cytochrome c. J Biol Chem. 274:21155–21161. 1999. View Article : Google Scholar : PubMed/NCBI
|
64
|
Sporn MB and Liby KT: NRF2 and cancer: The
good, the bad and the importance of context. Nat Rev Cancer.
12:564–571. 2012. View Article : Google Scholar : PubMed/NCBI
|
65
|
Tang Z, Hu B, Zang F, Wang J, Zhang X and
Chen H: Nrf2 drives oxidative stress-induced autophagy in nucleus
pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect
intervertebral disc from degeneration. Cell Death Dis. 10:5102019.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Wu X, Sun R, Wang H, Yang B, Wang F, Xu H,
Chen S, Zhao R, Pi J and Xu Y: Enhanced p62-NRF2 feedback loop due
to impaired autophagic flux contributes to Arsenic-induced
malignant transformation of human keratinocytes. Oxid Med Cell
Longev. 2019:10389322019. View Article : Google Scholar : PubMed/NCBI
|
67
|
Zhang X, Ding R, Zhou Y, Zhu R, Liu W, Jin
L, Yao W and Gao X: Toll-like receptor 2 and Toll-like receptor
4-dependent activation of B cells by a polysaccharide from marine
fungus Phoma herbarum YS4108. PLoS One. 8:e607812013. View Article : Google Scholar : PubMed/NCBI
|
68
|
Chen S, Yin DK, Yao WB, Wang YD, Zhang YR
and Gao XD: Macrophage receptors of polysaccharide isolated from a
marine filamentous fungus Phoma herbarum YS4108. Acta Pharmacol
Sin. 30:1008–1014. 2009. View Article : Google Scholar : PubMed/NCBI
|
69
|
Jin X, Ruiz Beguerie J, Sze DM and Chan
GC: Ganoderma lucidum (Reishi mushroom) for cancer
treatment. Cochrane Database Syst Rev. 4:CD0077312016.PubMed/NCBI
|
70
|
Gao Y, Dai X, Chen G, Ye J and Zhou S: A
randomized, placebo-controlled, multicenter study of Ganoderma
lucidum (w.curt.:fr.) Lloyd (aphyllophoromycetideae)
polysaccharides (ganopoly) in patients with advanced lung cancer.
Int J Med Mushrooms. 5:369–381. 2003. View Article : Google Scholar
|
71
|
He W and Yi J: Study of clinical eficacy
of Lingzhi spore capsule on tumour patients with
chemotherapy/radiotherapy. Clin J Trad Chin Med. 9:292–293.
1997.
|
72
|
Yan B, Wei Y and Li Y: Efect of Laojunxian
Lingzhi oral liquid combined with chemotherapy on non-parvicellular
lung cancer at stage II and III. Trad Chin Drug Res Clin Pharmacol.
9:78–80. 1998.
|
73
|
Zhang X, Jia Y, Li Q, Niu S, Zhu S and
Shen C: Clinical curative efect investigation of Lingzhi tablet on
lung cancer. Chin Trad Pat Med. 22:486–488. 2000.
|
74
|
Zhong LD, Yan PJ, Lam WC, Yao L and Bian
ZX: Coriolus Versicolor and Ganoderma Lucidum related
natural products as an adjunct therapy for cancers: A systematic
review and meta-analysis of randomized controlled trials. Front
Pharmacol. 10:7032019. View Article : Google Scholar : PubMed/NCBI
|