1
|
George Liddell H and Scott R: Drugs in
clinical development for melanoma. Pharmaceut Med. 26:171–183.
2012.
|
2
|
Saavedra-Alonso S, Zapata-Benavides P,
Chavez-Escamilla AK, Manilla-Muñoz E, Zamora-Avila DE,
Franco-Molina MA and Rodriguez-Padilla C: WT1 shRNA delivery using
transferrin-conjugated PEG liposomes in an in vivo model of
melanoma. Exp Ther Med. 12:3778–3784. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pippa C, Mirela H, Kate F and Christine P:
Management of melanoma. Br Med Bull. 111:149–162. 2014. View Article : Google Scholar
|
4
|
Deiana M, Dalle Carbonare L, Serena M,
Cheri S, Parolini F, Gandini A, Marchetto G, Innamorati G, Manfredi
M, Marengo E, et al: New insights into the runt domain of RUNX2 in
melanoma cell proliferation and migration. Cells. 7:2202018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen L and Jin S: Trends in mortality
rates of cutaneous melanoma in East Asian populations. PeerJ.
4:e28092016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wada-Ohno M, Ito T and Furue M: Adjuvant
therapy for melanoma. Curr Treat Options Oncol. 20:632019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Tchernev G: One step melanoma surgery for
patient with thick primary melanomas: ‘To break the rules, you must
first master them!’. Open Access Maced J Med Sci. 6:367–371. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hsu SC and Chung JG: Anticancer potential
of emodin. Biomedicine. 2:108–116. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sun X, Yan H, Zhang Y, Wang X, Qin D and
Yu J: Preparative separation of diterpene lactones and flavones
from Andrographis paniculate using off-line two-dimensional
high-speed counter-current chromatography. Molecules. 24:6202019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Mao W and Xia Q: Anti-tumor effects of
traditional Chinese medicine give a promising perspective. J Cancer
Res Ther. 10 (Suppl 1):S1–S2. 2014. View Article : Google Scholar
|
11
|
Luo F, Gu J, Chen L and Xu X: Systems
pharmacology strategies for anticancer drug discovery based on
natural products. Mol Biosyst. 10:1912–1917. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhaokun Y, Zijun L and Jiumao L:
Anticancer properties of traditional Chinese medicine. Comb Chem
High Throughput Screen. 20:423–429. 2017.
|
13
|
Xiang Y, Guo Z, Zhu P, Chen J and Huang Y:
Traditional Chinese medicine as a cancer treatment: Modern
perspectives of ancient but advanced science. Cancer Med.
8:1958–1975. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen CA, Liu CK, Hsu ML, Chi CW, Ko CC,
Chen JS, Lai CT, Chang HH, Lee TY, Lai YL and Chen YJ: Daphnoretin
modulates differentiation and maturation of human dendritic cells
through down-regulation of c-Jun N-terminal kinase. Int
Immunopharmacol. 51:25–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu CL, Li YM, Fu GQ, Yang L, Jiang JG, Zhu
L, Lin FL, Chen J and Lin QS: Extraction optimisation of
daphnoretin from root bark of Wikstroemia indica (L.) C.A. and its
anti-tumour activity tests. Food Chem. 124:1500–1506. 2011.
View Article : Google Scholar
|
16
|
Van MJ, Kaspers GJ and Cloos J: Cell
sensitivity Assays: The MTT assay. Methods Mol Biol. 88:237–245.
2011.
|
17
|
Wu S, Zhu G, Ni Y, Zhang T and Jiang W:
Cucurbitacin I (JSI-124)-induced apoptosis of HepG2 cells via p53
signaling pathway. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:33–38.
2017.(In Chinese). PubMed/NCBI
|
18
|
Yurinskaya V, Aksenov N, Moshkov A, Model
M, Goryachaya T and Vereninov A: A comparative study of U937 cell
size changes during apoptosis initiation by flow cytometry, light
scattering, water assay and electronic sizing. Apoptosis.
22:1287–1295. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Luu HN, Wen W, Li H, Dai Q, Yang G, Cai Q,
Xiang YB, Gao YT, Zheng W and Shu XO: Are dietary antioxidant
intake indices correlated to oxidative stress and inflammatory
marker levels? Antioxid Redox Signal. 22:951–959. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang B, Peng X, Li G, Xu Y, Xia X and
Wang Q: Oxidative stress is involved in Patulin induced apoptosis
in HEK293 cells. Toxicon. 94:1–7. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gu S and He J: Daphnoretin induces cell
cycle arrest and apoptosis in human osteosarcoma (HOS) cells.
Molecules. 17:598–612. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang ZY, Kan JT, Cheng ZY, Wang XL, Zhu YZ
and Guo W: Daphnoretin-induced apoptosis in HeLa cells: A possible
mitochondria-dependent pathway. Cytotechnology. 66:512014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang HF, Wu Z, Bai X, Zhang Y and He P:
Effect of daphnoretin on the proliferation and apoptosis of A549
lung cancer cells in vitro. Oncol Lett. 8:1139–1142. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu S, Guo H, Gao X, Li M and Bian H:
Daphnoretin: An invasion inhibitor and apoptosis accelerator for
colon cancer cells by regulating the Akt signal pathway. Biomed
Pharmacother. 111:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Olechowska-Jarząb A, Ptak-Belowska A and
Brzozowski T: Terapeutic importance of apoptosis pathways in
pancreatic cancer. Folia Med Cracov. 56:61–70. 2016.
|
26
|
Li D, Hu X, Han T, Liao J, Xiao W, Xu S,
Li Z, Wang Z, Hua H and Xu J: NO-releasing enmein-type diterpenoid
derivatives with selective antiproliferative activity and effects
on apoptosis-related proteins. Molecules. 21:11932016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lkhagvasuren K and Kim JK: Ziyuglycoside
II induces caspases-dependent and caspases-independent apoptosis in
human colon cancer cells. Toxicol In Vitro. 59:255–262. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Palai TK and Mishra SR: Caspases: An
apoptosis mediator. J Adv Veterinary Animal Res. 2:18–22. 2015.
View Article : Google Scholar
|
29
|
Frejlich E, Rudno-Rudzińska J, Janiszewski
K, Salomon L and Kielan W: Caspases and their role in gastric
cancer. Adv Clin Exp Med. 22:593–602. 2013.PubMed/NCBI
|
30
|
Zhao Y, Jing Z, Lv J, Zhang Z, Lin J, Cao
X, Zhao Z, Liu P and Mao W: Berberine activates
caspase-9/cytochrome c- mediated apoptosis to suppress
triple-negative breast cancer cells in vitro and in vivo. Biomed
Pharmacother. 95:18–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sheng M, Zhou Y, Yu W, Weng Y, Xu R and Du
H: Protective effect of Berberine pretreatment in hepatic ischemia/
reperfusion injury of rat. Transplant Proc. 47:275–282. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kvansakul M and Hinds MG: The Bcl-2
family: Structures, interactions and targets for drug discovery.
Apoptosis. 20:136–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Galluzzi L, Kepp O, Trojel-Hansen C and
Kroemer G: Mitochondrial control of cellular life, stress, and
death. Circ Res. 111:11982012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sawa A and Sedlak TW: Oxidative stress and
inflammation in schizophrenia. Schizophr Res. 176:1–2. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Jin S and Dai CL: Attenuation of
reperfusion-induced hepatocyte apoptosis is associated with
reversed bcl-2/bax ratio in hemi-hepatic artery-preserved portal
occlusion. J Surg Res. 174:298–304. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ding H, Wang J, Jia FP, Yi J and Zhang M:
Research on the A549 cell apoptosis mechanism of the nude mouse
model using MenSC-sTRAIL. Eur Rev Med Pharmacol Sci. 21:3218–3222.
2017.PubMed/NCBI
|
37
|
Burrer CM, Foight GW, Keating AE and Chan
GC: Selective peptide inhibitors of antiapoptotic cellular and
viral Bcl-2 proteins lead to cytochrome c release during
latent Kaposis sarcoma-associated herpesvirus infection. Virus Res.
211:86–88. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gupta R and Ghosh S: Putative roles of
mitochondrial Voltage-dependent anion channel, Bcl-2 family
proteins and c-Jun N-terminal Kinases in ischemic stroke associated
apoptosis. Biochimie Open. 4:47–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jutooru I, Guthrie AS, Chadalapaka G,
Pathi S, Kim K, Burghardt R, Jin UH and Safe S: Mechanism of action
of phenethylisothiocyanate and other reactive oxygen
species-inducing anticancer agents. Mol Cell Biol. 34:2382–2395.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hong M, Li J, Li S and Almutairi MM:
Acetylshikonin sensitizes hepatocellular carcinoma cells to
apoptosis through ROS-mediated caspase activation. Cells.
8:14662019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kang R, Li R, Dai P, Li Z, Li Y and Li C:
Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells
by promoting ROS production. Environ Pollut. 251:689–698. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Choi YH, Kang YJ, Kim SH, Sung B and Kim
ND: Abstract 1773: MHY-449 induces apoptotic cell death through
ROS- and caspase-dependent pathways in AGS human gastric cancer
cells. Cancer Res. 75:17732015.
|
43
|
AlBasher G, AlKahtane AA, Alarifi S, Ali
D, Alessia MS, Almeer RS, Abdel-Daim MM, Al-Sultan NK, Al-Qahtani
AA, Ali H and Alkahtani S: Methotrexate-induced apoptosis in human
ovarian adenocarcinoma SKOV-3 cells via ROS-mediated
bax/bcl-2-cyt-c release cascading. Onco Targets Ther. 12:21–30.
2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen L, Gong MW, Peng ZF, Zhou T, Ying MG,
Zheng QH, Liu QY and Zhang QQ: The marine fungal metabolite,
dicitrinone B, induces A375 cell apoptosis through the ROS-related
caspase pathway. Mar Drugs. 12:1939–1958. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY,
Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis,
cancer stem cell phenotype, and oncogenic metabolism in cancer
cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Park C, Cha HJ, Lee H, Hwang-Bo H, Ji SY,
Kim MY, Hong SH, Jeong JW, Han MH, Choi SH, et al: Induction of
G2/M cell cycle arrest and apoptosis by genistein in human bladder
cancer T24 cells through inhibition of the ROS-dependent PI3k/Akt
signal transduction pathway. Antioxidants (Basel). 8:3272019.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Gao X, Li X, Ho CT, Lin X and Chen Z:
Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent
apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling
pathway. Food Res Int. 129:1088542019. View Article : Google Scholar : PubMed/NCBI
|