1
|
Roca E, Berruti A, Sbiera S, Rapa I, Oneda
E, Sperone P, Ronchi CL, Ferrari L, Grisanti S, Germano A, et al:
Topoisomerase 2α and thymidylate synthase expression in
adrenocortical cancer. Endocr Relat Cancer. 24:319–327. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Simon G, Pattou F, Mirallié E, Lifante JC,
Nominé C, Arnault V, de Calan L, Caillard C, Carnaille B, Brunaud
L, et al: Surgery for recurrent adrenocortical carcinoma: A
multicenter retrospective study. Surgery. 161:249–256. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Assié G, Antoni G, Tissier F, Caillou B,
Abiven G, Gicquel C, Leboulleux S, Travagli JP, Dromain C, Bertagna
X, et al: Prognostic parameters of metastatic adrenocortical
carcinoma. J Clin Endocrinol Metab. 92:148–154. 2007. View Article : Google Scholar
|
4
|
Ruggiero C, Doghman-Bouguerra M, Ronco C,
Benhida R, Rocchi S and Lalli E: The GRP78/BiP inhibitor HA15
synergizes with mitotane action against adrenocortical carcinoma
cells through convergent activation of ER stress pathways. Mol Cell
Endocrinol. 474:57–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hermsen IG, Haak HR, de Krijger RR,
Kerkhofs TM, Feelders RA, de Herder WW, Wilmink H, Smit JW,
Gelderblom H, de Miranda NF, et al: Mutational analyses of
epidermal growth factor receptor and downstream pathways in
adrenocortical carcinoma. Eur J Endocrinol. 169:51–58. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Baudin E, Pellegriti G, Bonnay M,
Penfornis A, Laplanche A, Vassal G and Schlumberger M: Impact of
monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p'DDD)
levels on the treatment of patients with adrenocortical carcinoma.
Cancer. 92:1385–1392. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Muratori L, Pia A, Reimondo G, Pisano C,
La Salvia A, Puglisi S, Scagliotti GV and Sperone P: Prolonged
adrenal insufficiency after the discontinuation of mitotane
therapy. Endocr Metab Immune Disord Drug Targets. 20:485–487. 2020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Else T, Kim AC, Sabolch A, Raymond VM,
Kandathil A, Caoili EM, Jolly S, Miller BS, Giordano TJ and Hammer
GD: Adrenocortical carcinoma. Endocr Rev. 35:282–326. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Seidel E, Walenda G, Messerschmidt C,
Obermayer B, Peitzsch M, Wallace P, Bahethi R, Yoo T, Choi M,
Schrade P, et al: Generation and characterization of a
mitotane-resistant adrenocortical cell line. Endocr Connect.
9:122–134. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Schaffer M, Schaffer PM and Bar-Sela G: An
update on Curcuma as a functional food in the control of cancer and
inflammation. Curr Opin Clin Nutr Metab Care. 18:605–611. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun C, Zhang S, Liu C and Liu X: Curcumin
Promoted miR-34a expression and suppressed proliferation of gastric
cancer cells. Cancer Biother Radiopharm. 34:634–641. 2019.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Milacic V, Banerjee S, Landis-Piwowar KR,
Sarkar FH, Majumdar AP and Dou QP: Curcumin inhibits the proteasome
activity in human colon cancer cells in vitro and in vivo. Cancer
Res. 68:7283–7292. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Somasundaram S, Edmund NA, Moore DT, Small
GW, Shi YY and Orlowski RZ: Dietary curcumin inhibits
chemotherapy-induced apoptosis in models of human breast cancer.
Cancer Res. 62:3868–3875. 2002.PubMed/NCBI
|
14
|
Sreekanth CN, Bava SV, Sreekumar E and
Anto RJ: Molecular evidences for the chemosensitizing efficacy of
liposomal curcumin in paclitaxel chemotherapy in mouse models of
cervical cancer. Oncogene. 30:3139–3152. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Watson JL, Hill R, Yaffe PB, Greenshields
A, Walsh M, Lee PW, Giacomantonio CA and Hoskin DW: Curcumin causes
superoxide anion production and p53-independent apoptosis in human
colon cancer cells. Cancer Lett. 297:1–8. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Killian PH, Kronski E, Michalik KM,
Barbieri O, Astigiano S, Sommerhoff CP, Pfeffer U, Nerlich AG and
Bachmeier BE: Curcumin inhibits prostate cancer metastasis in vivo
by targeting the inflammatory cytokines CXCL1 and −2.
Carcinogenesis. 33:2507–2519. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Xiao J, Zhou H, Yang S, Wu X,
Jiang C, Zhao Y, Liang D, Li X and Liang G: A novel monocarbonyl
analogue of curcumin,
(1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced
cancer cell H460 apoptosis via activation of endoplasmic reticulum
stress signaling pathway. J Med Chem. 54:3768–3778. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Khan AQ, Ahmed EI, Elareer N, Fathima H,
Prabhu KS, Siveen KS, Kulinski M, Azizi F, Dermime S, et al:
Curcumin-mediated apoptotic cell death in papillary thyroid cancer
and cancer stem-like cells through targeting of the JAK/STAT3
signaling pathway. International journal of molecular sciences.
212020.
|
19
|
Sharma RA, McLelland HR, Hill KA, Ireson
CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, et
al: Pharmacodynamic and pharmacokinetic study of oral Curcuma
extract in patients with colorectal cancer. Clin Cancer Res.
7:1894–1900. 2001.PubMed/NCBI
|
20
|
Saghatelyan T, Tananyan A, Janoyan N,
Tadevosyan A, Petrosyan H, Hovhannisyan A, Hayrapetyan L,
Arustamyan M, Arnhold J, et al: Efficacy and safety of curcumin in
combination with paclitaxel in patients with advanced, metastatic
breast cancer: A comparative, randomized, double-blind,
placebo-controlled clinical trial. Phytomedicine. 70:1532182020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Choi YH, Han DH, Kim SW, Kim MJ, Sung HH,
Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM, et al: A randomized,
double-blind, placebo-controlled trial to evaluate the role of
curcumin in prostate cancer patients with intermittent androgen
deprivation. Prostate. 79:614–621. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Boudesco C, Cause S, Jego G and Garrido C:
Hsp70: A cancer target inside and outside the cell. Methods Mol
Biol. 1709:371–396. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee WH, Loo CY, Young PM, Traini D, Mason
RS and Rohanizadeh R: Recent advances in curcumin nanoformulation
for cancer therapy. Expert Opin Drug Deliv. 11:1183–1201. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Shishodia S, Potdar P, Gairola CG and
Aggarwal BB: Curcumin (diferuloylmethane) down-regulates cigarette
smoke-induced NF-kappaB activation through inhibition of
IkappaBalpha kinase in human lung epithelial cells: Correlation
with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis.
24:1269–1279. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu G, Shen Q, Jiang H, Ji O, Zhu L and
Zhang L: Curcumin inhibited the growth and invasion of human
monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP
signalling. Pharm Biol. 58:25–34. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Moradi-Marjaneh R, Hassanian SM, Rahmani
F, Aghaee-Bakhtiari SH, Avan A and Khazaei M: Phytosomal curcumin
elicits anti-tumor properties through suppression of angiogenesis,
cell proliferation and induction of oxidative stress in colorectal
cancer. Curr Pharm Des. 24:4626–4638. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kumar P, Barua CC, Sulakhiya K and Sharma
RK: Curcumin ameliorates cisplatin-induced nephrotoxicity and
potentiates its anticancer activity in sd rats: Potential role of
curcumin in breast cancer chemotherapy. Front Pharmacol. 8:1322017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kerkhofs TM, Ettaieb MH, Hermsen IG and
Haak HR: Developing treatment for adrenocortical carcinoma. Endocr
Relat Cancer. 22:R325–R338. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen L, Zhan CZ, Wang T, You H and Yao R:
Curcumin inhibits the proliferation, migration, invasion, and
apoptosis of diffuse large B-cell lymphoma cell line by regulating
MiR-21/VHL axis. Yonsei Med J. 61:20–29. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hassanalilou T, Ghavamzadeh S and Khalili
L: Curcumin and gastric cancer: A review on mechanisms of action. J
Gastrointest Cancer. 50:185–192. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
He YC, He L, Khoshaba R, Lu FG, Cai C,
Zhou FL, Liao DF and Cao D: Curcumin nicotinate selectively induces
cancer cell apoptosis and cycle arrest through a P53-mediated
mechanism. Molecules. 24:41792019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maiti P, Plemmons A and Dunbar GL:
Combination treatment of berberine and solid lipid curcumin
particles increased cell death and inhibited PI3K/Akt/mTOR pathway
of human cultured glioblastoma cells more effectively than did
individual treatments. PLoS One. 14:e02256602019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chadalapaka G, Jutooru I, Chintharlapalli
S, Papineni S, Smith R III, Li X and Safe S: Curcumin decreases
specificity protein expression in bladder cancer cells. Cancer Res.
68:5345–5354. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Firouzi Amoodizaj F, Baghaeifar S, Taheri
E, Farhoudi Sefidan Jadid M, Safi M, Seyyed Sani N, Hajazimian S,
Isazadeh A and Shanehbandi D: Enhanced anticancer potency of
doxorubicin in combination with curcumin in gastric adenocarcinoma.
J Biochem Mol Toxicol. 34:e224862020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin SS, Huang HP, Yang JS, Wu JY, Hsia TC,
Lin CC, Lin CW, Kuo CL, Gibson Wood W and Chung JG: DNA damage and
endoplasmic reticulum stress mediated curcumin-induced cell cycle
arrest and apoptosis in human lung carcinoma A-549 cells through
the activation caspases cascade- and mitochondrial-dependent
pathway. Cancer Lett. 272:77–90. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Das JK, Xiong X, Ren X, Yang JM and Song
J: Heat Shock Proteins in Cancer Immunotherapy. J Oncol.
2019:32672072019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kumar S, Stokes J III, Singh UP, Scissum
Gunn K, Acharya A, Manne U and Mishra M: Targeting Hsp70: A
possible therapy for cancer. Cancer Lett. 374:156–166. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yun CW, Kim HJ, Lim JH and Lee SH: Heat
shock proteins: agents of cancer development and therapeutic
targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Avdalyan AM, Ivanov AA, Lushnikova EL,
Molodykh OP and Vikhlyanov IV: The relationship of immunoexpression
of Ki-67 and Hsp70 with clinical and norphological parameters and
prognosis of papillary thyroid cancer. Bull Exp Biol Med.
168:688–693. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Feng J, Zhan Y, Zhang Y, Zheng H, Wang W
and Fan S: Increased expression of heat shock protein (HSP) 10 and
HSP70 correlates with poor prognosis of nasopharyngeal carcinoma.
Cancer Manag Res. 11:8219–8227. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sheng L, Tang T, Liu Y, Ma Y, Wang Z, Tao
H, Zhang Y and Qi Z: Inducible HSP70 antagonizes cisplatin induced
cell apoptosis through inhibition of the MAPK signaling pathway in
HGC 27 cells. Int J Mol Med. 42:2089–2097. 2018.PubMed/NCBI
|
43
|
Wagner EF and Nebreda AR: Signal
integration by JNK and p38 MAPK pathways in cancer development. Nat
Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yue J and Lopez JM: Understanding MAPK
signaling pathways in apoptosis. Int J Mol Sci. 21:2346212020.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Sui X, Kong N, Ye L, Han W, Zhou J, Zhang
Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of
apoptosis and autophagy in response to chemotherapeutic agents.
Cancer Lett. 344:174–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Gabai VL, Meriin AB, Mosser DD, Caron AW,
Rits S, Shifrin VI and Sherman MY: Hsp70 prevents activation of
stress kinases. A novel pathway of cellular thermotolerance. J Biol
Chem. 272:18033–18037. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zheng QY, Li PP, Jin FS, Yao C, Zhang GH,
Zang T and Ai X: Ursolic acid induces ER stress response to
activate ASK1-JNK signaling and induce apoptosis in human bladder
cancer T24 cells. Cell Signal. 25:206–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Choi JH, Jeong YJ, Yu AR, Yoon KS, Choe W,
Ha J, Kim SS, Yeo EJ and Kang I: Fluoxetine induces apoptosis
through endoplasmic reticulum stress via mitogen-activated protein
kinase activation and histone hyperacetylation in SK-N-BE(2)-M17
human neuroblastoma cells. Apoptosis. 22:1079–1097. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Mathur A, Abd Elmageed ZY, Liu X,
Kostochka ML, Zhang H, Abdel-Mageed AB and Mondal D: Subverting
ER-stress towards apoptosis by nelfinavir and curcumin coexposure
augments docetaxel efficacy in castration resistant prostate cancer
cells. PLoS One. 9:e1031092014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zinszner H, Kuroda M, Wang X, Batchvarova
N, Lightfoot RT, Remotti H, Stevens JL and Ron D: CHOP is
implicated in programmed cell death in response to impaired
function of the endoplasmic reticulum. Genes Dev. 12:982–995. 1998.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Liu TH, Tu WQ, Tao WC, Liang QE, Xiao Y
and Chen LG: Verification of resveratrol inhibits intestinal aging
by downregulating ATF4/Chop/Bcl-2/Bax signaling pathway: Based on
network pharmacology and animal experiment. Front Pharmacol.
11:10642020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang X, Zhuang Y, Fang Y, Cao H, Zhang C,
Xing C, Guo X, Li G, Liu P, Hu G, et al: Endoplasmic reticulum
stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP
signaling pathway in duck renal tubular epithelial cells. Environ
Pollut. 272:1159812021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Khatun H, Wada Y, Konno T, Tatemoto H and
Yamanaka KI: Endoplasmic reticulum stress attenuation promotes
bovine oocyte maturation in vitro. Reproduction. 159:361–370. 2020.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Liang T, Zhang X, Xue W, Zhao S, Zhang X
and Pei J: Curcumin induced human gastric cancer BGC-823 cells
apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway.
Int J Mol Sci. 15:15754–15765. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Yu X, Zhong J, Yan L, Li J, Wang H, Wen Y
and Zhao Y: Curcumin exerts antitumor effects in retinoblastoma
cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med.
38:861–868. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang W, Chen L, Shen Y and Xu J:
Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via
inhibition of the PERK-ATF4-CHOP pathway. Toxicol In Vitro.
36:186–196. 2016. View Article : Google Scholar : PubMed/NCBI
|