1
|
Christakos S, Dhawan P, Verstuyf A,
Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular
mechanism of action, and pleiotropic effects. Physiol Rev.
96:365–408. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Umar M, Sastry KS and Chouchane AI: Role
of vitamin D beyond the skeletal function: A review of the
molecular and clinical studies. Int J Mol Sci. 19:16182018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Krishnan AV and Feldman D: Mechanisms of
the anti-cancer and anti-inflammatory actions of vitamin D. Annu
Rev Pharmacol Toxicol. 51:311–336. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Grant WB and Boucher BJ: Randomized
controlled trials of vitamin D and cancer incidence: A modeling
study. PLoS One. 12:e01764482017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bandera Merchan B, Morcillo S,
Martin-Nuñez G, Tinahones FJ and Macías-González M: The role of
vitamin D and VDR in carcinogenesis: Through epidemiology and basic
sciences. J Steroid Biochem Mol Biol. 167:203–218. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Picotto G, Liaudat AC, Bohl L and Tolosa
de Talamoni N: Molecular aspects of vitamin D anticancer activity.
Cancer Invest. 30:604–614. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Díaz L, Díaz-Muñoz M, García-Gaytán AC and
Méndez I: Mechanistic effects of calcitriol in cancer biology.
Nutrients. 7:5020–5050. 2015. View Article : Google Scholar
|
8
|
Campbell MJ and Trump DL: Vitamin D
receptor signaling and cancer. Endocrinol Metab Clin North Am.
46:1009–1038. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kulling PM, Olson KC, Olson TL, Feith DJ
and Loughran TP Jr: Vitamin D in hematological disorders and
malignancies. Eur J Haematol. 98:187–197. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lazo G, Kantarjian H, Estey E, Thomas D,
O'Brien S and Cortes J: Use of arsenic trioxide (As2O3) in the
treatment of patients with acute promyelocytic leukemia. Cancer.
97:2218–2224. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hoonjan M, Jadhav V and Bhatt P: Arsenic
trioxide: Insights into its evolution to an anticancer agent. J
Biol Inorg Chem. 23:313–329. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Abudoureyimu A and Muhemaitibake A:
Arsenic trioxide regulates gastric cancer cell apoptosis by
mediating cAMP. Eur Rev Med Pharmacol Sci. 21:612–617.
2017.PubMed/NCBI
|
13
|
Sadaf N, Kumar N, Ali M, Ali V, Bimal S
and Haque R: Arsenic trioxide induces apoptosis and inhibits the
growth of human liver cancer cells. Life Sci. 205:9–17. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Woo SH, Park IC, Park MJ, Lee HC, Lee SJ,
Chun YJ, Lee SH, Hong SI and Rhee CH: Arsenic trioxide induces
apoptosis through a reactive oxygen species-dependent pathway and
loss of mitochondrial membrane potential in HeLa cells. Int J
Oncol. 21:57–63. 2002.PubMed/NCBI
|
15
|
Kizildag S, Ates H and Kizildag S:
Treatment of K562 cells with 1,25-dihydroxyvitamin D3 induces
distinct alterations in the expression of apoptosis-related genes
BCL2, BAX, BCLXL, and p21. Ann Hematol. 89:1–7. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bae JY, Kim JW and Kim I: Low-dose
1,25-dihydroxyvitamin D(3) combined with arsenic trioxide
synergistically inhibits proliferation of acute myeloid leukemia
cells by promoting apoptosis. Oncol Rep. 30:485–491. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Pozarowski P and Darzynkiewicz Z: Analysis
of cell cycle by flow cytometry. Methods Mol Biol. 281:301–311.
2004.PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Deeb KK, Trump DL and Johnson CS: Vitamin
D signalling pathways in cancer: Potential for anticancer
therapeutics. Nat Rev Cancer. 7:684–700. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Krishnan AV, Trump DL, Johnson CS and
Feldman D: The role of vitamin D in cancer prevention and
treatment. Endocrinol Metab Clin North Am. 39:401–418. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Peery RC, Liu JY and Zhang JT: Targeting
survivin for therapeutic discovery: Past, present, and future
promises. Drug Discov Today. 22:1466–1477. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mobahat M, Narendran A and Riabowol K:
Survivin as a preferential target for cancer therapy. Int J Mol
Sci. 15:2494–2516. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Friedrichs B, Siegel S, Andersen MH,
Schmitz N and Zeis M: Survivin-derived peptide epitopes and their
role for induction of antitumor immunity in hematological
malignancies. Leuk Lymphoma. 47:978–985. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li N, Guan X, Li F, Li X and Chen Y:
Vorinostat enhances chemosensitivity to arsenic trioxide in K562
cell line. Peer J. 3:e9622015. View Article : Google Scholar : PubMed/NCBI
|