1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tan WL, Jain A, Takano A, Newell EW, Iyer
NG, Lim WT, Tan EH, Zhai W, Hillmer AM, Tam WL and Tan DSW: Novel
therapeutic targets on the horizon for lung cancer. Lancet Oncol.
17:e347–e362. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang H, Guo L and Chen J: Rationale for
lung adenocarcinoma prevention and drug development based on
molecular biology during carcinogenesis. Onco Targets Ther.
13:3085–3091. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ettinger DS: Ten years of progress in
non-small cell lung cancer. J Natl Compr Canc Netw. 10:292–295.
2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi
JW, Lee JI, Suh YL, Ku BM, Eum HH, et al: Single-cell RNA
sequencing demonstrates the molecular and cellular reprogramming of
metastatic lung adenocarcinoma. Nat Commun. 11:22852020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mizuno K, Mataki H, Seki N, Kumamoto T,
Kamikawaji K and Inoue H: MicroRNAs in non-small cell lung cancer
and idiopathic pulmonary fibrosis. J Hum Genet. 62:57–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Prosniak M, Dierov J, Okami K, Tilton B,
Jameson B, Sawaya BE and Gartenhaus RB: A novel candidate oncogene,
MCT-1, is involved in cell cycle progression. Cancer Res.
58:4233–4237. 1998.PubMed/NCBI
|
8
|
Li Y, Wang B, Gui S and Ji J: Multiple
copies in T-cell malignancy 1 (MCT-1) promotes the stemness of
non-small cell lung cancer cells via activating Interleukin-6
(IL-6) signaling through suppressing MiR-34a expression. Med Sci
Monit. 25:10198–10204. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shih HJ, Chen HH, Chen YA, Wu MH, Liou GG,
Chang WW, Chen L, Wang LH and Hsu HL: Targeting MCT-1 oncogene
inhibits Shc pathway and xenograft tumorigenicity. Oncotarget.
3:1401–1415. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wu MH, Chen YA, Chen HH, Chang KW, Chang
IS, Wang LH and Hsu HL: MCT-1 expression and PTEN deficiency
synergistically promote neoplastic multinucleation through the
Src/p190B signaling activation. Oncogene. 33:5109–5120. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Levenson AS, Thurn KE, Simons LA,
Veliceasa D, Jarrett J, Osipo C, Jordan VC, Volpert OV, Satcher RL
Jr and Gartenhaus RB: MCT-1 oncogene contributes to increased in
vivo tumorigenicity of MCF7 cells by promotion of angiogenesis and
inhibition of apoptosis. Cancer Res. 65:10651–10656. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Dierov J, Prosniak M, Gallia G and
Gartenhaus RB: Increased G1 cyclin/cdk activity in cells
overexpressing the candidate oncogene, MCT-1. J Cell Biochem.
74:544–550. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al
Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R
signaling axis promotes EMT progression, cancer stemness and M2
macrophage polarization in triple-negative breast cancer. Mol
Cancer. 18:422019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Burkhart DL and Sage J: Cellular
mechanisms of tumour suppression by the retinoblastoma gene. Nat
Rev Cancer. 8:671–682. 2008. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Chen HZ, Tsai SY and Leone G: Emerging
roles of E2Fs in cancer: An exit from cell cycle control. Nat Rev
Cancer. 9:785–797. 2009. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Wang T, Chen X, Qiao W, Kong L, Sun D and
Li Z: Transcription factor E2F1 promotes EMT by regulating ZEB2 in
small cell lung cancer. BMC Cancer. 17:7192017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Singh S, Yennamalli RM, Gupta M and
Changotra H: Identification of nsSNPs of transcription factor E2F1
predisposing individuals to lung cancer and head and neck cancer.
Mutat Res. 821:1117042020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Farra R, Grassi G, Tonon F, Abrami M,
Grassi M, Pozzato G, Fiotti N, Forte G and Dapas B: The role of the
transcription factor E2F1 in hepatocellular carcinoma. Curr Drug
Deliv. 14:272–281. 2017.PubMed/NCBI
|
19
|
Farra R, Dapas B, Grassi M, Benedetti F
and Grassi G: E2F1 as a molecular drug target in ovarian cancer.
Expert Opin Ther Targets. 23:161–164. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bi XC, Pu XY, Liu JM and Huang S: Effect
of transcription factor E2F1 expression on the invasion of prostate
cancer. Zhonghua Yi Xue Za Zhi. 97:2856–2859. 2017.(In Chinese).
PubMed/NCBI
|
21
|
Tsantoulis PK and Gorgoulis VG:
Involvement of E2F transcription factor family in cancer. Eur J
Cancer. 41:2403–2414. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yin J, Fu W, Dai L, Jiang Z, Liao H, Chen
W, Pan L and Zhao J: ANKRD22 promotes progression of non-small cell
lung cancer through transcriptional up-regulation of E2F1. Sci Rep.
7:44302017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Porebska I, Wyrodek E, Kosacka M, Adamiak
J, Jankowska R and Harłozińska-Szmyrka A: Apoptotic markers p53,
Bcl-2 and Bax in primary lung cancer. In Vivo. 20:599–604.
2006.PubMed/NCBI
|
27
|
Reinert LS, Shi B, Nandi S, Mazan-Mamczarz
K, Vitolo M, Bachman KE, He H and Gartenhaus RB: MCT-1 protein
interacts with the cap complex and modulates messenger RNA
translational profiles. Cancer Res. 66:8994–9001. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo C, Huang T, Wang QH, Li H, Khanal A,
Kang EH, Zhang W, Niu HT, Dong Z and Cao YW: Monocarboxylate
transporter 1 and monocarboxylate transporter 4 in
cancer-endothelial co-culturing microenvironments promote
proliferation, migration, and invasion of renal cancer cells.
Cancer Cell Int. 19:1702019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Stewart MJ, Litz-Jackson S, Burgess GS,
Williamson EA, Leibowitz DS and Boswell HS: Role for E2F1 in p210
BCR-ABL downstream regulation of c-myc transcription initiation.
Studies in murine myeloid cells. Leukemia. 9:1499–1507.
1995.PubMed/NCBI
|
30
|
Matsumura I, Tanaka H and Kanakura Y: E2F1
and c-Myc in cell growth and death. Cell Cycle. 2:333–338. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wei S, Zhang ZY, Fu SL, Xie JG, Liu XS, Xu
YJ, Zhao JP and Xiong WN: Correction to: Hsa-miR-623 suppresses
tumor progression in human lung adenocarcinoma. Cell Death Dis.
9:8292018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xiong DD, Li ZY, Liang L, He RQ, Ma FC,
Luo DZ, Hu XH and Chen G: The LncRNA NEAT1 accelerates lung
adenocarcinoma deterioration and Binds to Mir-193a-3p as a
competitive endogenous RNA. Cell Physiol Biochem. 48:905–918. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Martin LW, D'Cunha J, Wang X, Herzan D, Gu
L, Abraham N, Demmy TL, Detterbeck FC, Groth SS, Harpole DH, et al:
Detection of occult micrometastases in patients with clinical stage
I non-small-cell lung cancer: A prospective analysis of mature
results of CALGB 9761 (Alliance). J Clin Oncol. 34:1484–1491. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ali SA, Justilien V, Jamieson L, Murray NR
and Fields AP: Protein Kinase Cι Drives a NOTCH3-dependent
Stem-like phenotype in mutant KRAS lung adenocarcinoma. Cancer
Cell. 29:367–378. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Calvayrac O, Pradines A, Pons E, Mazières
J and Guibert N: Molecular biomarkers for lung adenocarcinoma. Eur
Respir J. 49:16017342017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kasiappan R, Shih HJ, Chu KL, Chen WT, Liu
HP, Huang SF, Choy CO, Shu CL, Din R, Chu JS and Hsu HL: Loss of
p53 and MCT-1 overexpression synergistically promote chromosome
instability and tumorigenicity. Mol Cancer Res. 7:536–548. 2009.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sprowl-Tanio S, Habowski AN, Pate KT,
McQuade MM, Wang K, Edwards RA, Grun F, Lyou Y and Waterman ML:
Lactate/pyruvate transporter MCT-1 is a direct Wnt target that
confers sensitivity to 3-bromopyruvate in colon cancer. Cancer
Metab. 4:202016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Giatromanolaki A, Koukourakis MI,
Koutsopoulos A, Mendrinos S and Sivridis E: The metabolic
interactions between tumor cells and tumor-associated stroma (TAS)
in prostatic cancer. Cancer Biol Ther. 13:1284–1289. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi B, Hsu HL, Evens AM, Gordon LI and
Gartenhaus RB: Expression of the candidate MCT-1 oncogene in B- and
T-cell lymphoid malignancies. Blood. 102:297–302. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kasiappan R, Shih HJ, Wu MH, Choy C, Lin
TD, Chen L and Hsu HL: The antagonism between MCT-1 and p53 affects
the tumorigenic outcomes. Mol Cancer. 9:3112010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Huang HK, Lee SY, Huang SF, Lin YS, Chao
SC, Huang SF, Lee SC, Cheng TH, Loh SH and Tsai YT: Isoorientin
decreases cell migration via decreasing functional activity and
molecular expression of proton-linked monocarboxylate transporters
in human lung cancer cells. Am J Chin Med. 48:201–222. 2020.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Aravind L and Koonin EV: Novel predicted
RNA-binding domains associated with the translation machinery. J
Mol Evol. 48:291–302. 1999. View Article : Google Scholar : PubMed/NCBI
|
43
|
Johannsson S, Neumann P and Ficner R:
Crystal structure of the human tRNA guanine transglycosylase
catalytic subunit QTRT1. Biomolecules. 8:812018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fleischer TC, Weaver CM, McAfee KJ,
Jennings JL and Link AJ: Systematic identification and functional
screens of uncharacterized proteins associated with eukaryotic
ribosomal complexes. Genes Dev. 20:1294–1307. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Holcik M and Sonenberg N: Translational
control in stress and apoptosis. Nat Rev Mol Cell Biol. 6:318–327.
2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Andersen G, Busso D, Poterszman A, Hwang
JR, Wurtz JM, Ripp R, Thierry JC, Egly JM and Moras D: The
structure of cyclin H: Common mode of kinase activation and
specific features. EMBO J. 16:958–967. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dang CV, O'Donnell KA, Zeller KI, Nguyen
T, Osthus RC and Li F: The c-Myc target gene network. Semin Cancer
Biol. 16:253–264. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bell LA and Ryan KM: Life and death
decisions by E2F-1. Cell Death Differ. 11:137–142. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu Z, Zheng S and Yu Q: The E2F family and
the role of E2F1 in apoptosis. Int J Biochem Cell Biol.
41:2389–2397. 2009. View Article : Google Scholar : PubMed/NCBI
|