1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Benson JR, Jatoi I, Keisch M, Esteva FJ,
Makris A and Jordan VC: Early breast cancer. Lancet. 373:1463–1479.
2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fan L, Strasser-Weippl K, Li JJ, St Louis
J, Finkelstein DM, Yu KD, Chen WQ, Shao ZM and Goss PE: Breast
cancer in China. Lancet Oncol. 15:e279–e289. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Susini T, Olivieri S, Molino C,
Castiglione F, Tavella K and Viligiardi R: Ovarian cancer initially
presenting as intramammary metastases and mimicking a primary
breast carcinoma: A case report and literature review. J Womens
Health (Larchmt). 19:169–174. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim HW, Chew BP, Wong TS, Park JS, Weng
BB, Byrne KM, Hayek MG and Reinhart GA: Dietary lutein stimulates
immune response in the canine. Vet Immunol Immunopathol.
74:315–327. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zou Z, Xu X, Huang Y, Xiao X, Ma L, Sun T,
Dong P, Wang X and Lin X: High serum level of lutein may be
protective against early atherosclerosis: The Beijing
atherosclerosis study. Atherosclerosis. 219:789–793. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Carpentier S, Knaus M and Suh M:
Associations between lutein, zeaxanthin, and age-related macular
degeneration: An overview. Crit Rev Food Sci. 49:313–326. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Reynoso-Camacho R, González-Jasso E,
Ferriz-Martínez R, Villalón-Corona B, Loarca-Piña GF, Salgado LM
and Ramos-Gomez M: Dietary supplementation of lutein reduces colon
carcinogenesis in DMH-treated rats by modulating K-ras, PκB, and
β-catenin proteins. Nutr Cancer. 63:39–45. 2011.PubMed/NCBI
|
9
|
Bharti AC and Aggarwal BB: Chemopreventive
agents induce suppression of nuclear factor-kappaB leading to
chemosensitization. Ann N Y Acad Sci. 973:392–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chang J, Zhang Y, Li Y, Lu K, Shen Y, Guo
Y, Qi Q, Wang M and Zhang S: NrF2/ARE and NF-κB pathway regulation
may be the mechanism for lutein inhibition of human breast cancer
cell. Future Oncol. 14:719–726. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
García-Padilla C, Aránega A and Franco D:
The role of long non-coding RNAs in cardiac development and
disease. AIMS Genet. 5:124–140. 2018. View Article : Google Scholar
|
12
|
Yu Y, Wang L, Li Z, Zheng Y, Shi Z and
Wang G: Long noncoding RNA CRNDE functions as a diagnostic and
prognostic biomarker in osteosarcoma, as well as promotes its
progression via inhibition of miR-335-3p. J Biochem Mol Toxicol.
35:e227342021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y
and Liu C: Systematic characterization of non-coding RNAs in
triple-negative breast cancer. Cell Prolif. 53:e128012020.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Grixti JM and Ayers D: Long noncoding RNAs
and their link to cancer. Noncoding RNA Res. 5:77–82. 2020.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ratti M, Lampis A, Ghidini M, Salati M,
Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and long
non-coding RNAs (lncRNAs) as new tools for cancer therapy: First
steps from bench to bedside. Target Oncol. 15:261–278. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Guan H, Shang G, Cui Y, Liu J, Sun X, Cao
W, Wang Y and Li Y: Long noncoding RNA APTR contributes to
osteosarcoma progression through repression of miR-132-3p and
upregulation of yes-associated protein 1. J Cell Physiol.
234:8998–9007. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu G, Xue M, Zhao Y, Han Y, Li C, Zhang S,
Zhang J and Xu J: Long noncoding RNA ZEB1-AS1 acts as a Sponge of
miR-141-3p to inhibit cell proliferation in colorectal cancer. Int
J Med Sci. 17:1589–1597. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guan H, Liu J, Lv P, Zhou L, Zhang J and
Cao W: MicroRNA-590 inhibits migration, invasion and
epithelial-to-mesenchymal transition of esophageal squamous cell
carcinoma by targeting low-density lipoprotein receptor-related
protein 6. Oncol Rep. 44:1385–1392. 2020.PubMed/NCBI
|
19
|
Sun P, Feng Y, Guo H, Li R, Yu P, Zhou X,
Pan Z, Liang Y, Yu B, Zheng Y, et al: MiR-34a inhibits cell
proliferation and induces apoptosis in human nasopharyngeal
carcinoma by targeting lncRNA MCM3AP-AS1. Cancer Manag Res.
12:4799–4806. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma W, Xue N, Zhang J, Wang D, Yao X, Lin L
and Xu Q: circUBAP2 regulates osteosarcoma progression via the
miR-204-3p/HMGA2 axis. Int J Oncol. 58:298–311. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma W, Zhao X, Xue N, Gao Y and Xu Q: The
LINC01410/miR-122-5p/NDRG3 axis is involved in the proliferation
and migration of osteosarcoma cells. IUBMB Life. 73:705–717. 2021.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guestini F, McNamara KM, Ishida T and
Sasano H: Triple negative breast cancer chemosensitivity and
chemoresistance: Current advances in biomarkers indentification.
Expert Opin Ther Targets. 20:705–720. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Echeverria GV, Powell E, Seth S, Ge Z,
Carugo A, Bristow C, Peoples M, Robinson F, Qiu H, Shao J, et al:
High-resolution clonal mapping of multi-organ metastasis in triple
negative breast cancer. Nat Commun. 9:5079–5095. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiong H, Shen J, Chen Z, Yang J, Xie B,
Jia Y, Jayasinghe U, Wang J, Zhao W, Xie S, et al: H19/let 7/Lin28
ceRNA network mediates autophagy inhibiting epithelial mesenchymal
transition in breast cancer. Int J Oncol. 56:794–806.
2020.PubMed/NCBI
|
27
|
Scacalossi KR, van Solingen C and Moore
KJ: Long non-coding RNAs regulating macrophage functions in
homeostasis and disease. Vascul Pharmacol. 114:122–130. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu KS, Li TP, Ton H, Mao XD and Chen YJ:
Advances of long noncoding RNAs-mediated regulation in
reproduction. Chin Med J (Engl). 131:226–234. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cortini F, Roma F and Villa C: Emerging
roles of long non-coding RNAs in the pathogenesis of Alzheimer's
disease. Ageing Res Rev. 50:19–26. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schulte C, Barwari T, Joshi A, Zeller T
and Mayr M: Noncoding RNAs versus protein biomarkers in
cardiovascular disease. Trends Mol Med. 26:583–596. 2020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Su Y, Zhou LL, Zhang YQ and Ni LY: Long
noncoding RNA HOTTIP is associated with male infertility and
promotes testicular embryonal carcinoma cell proliferation. Mol
Genet Genomic Med. 7:e8702019. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Yu Q, Zhao MW and Yang P: LncRNA UCA1
suppresses the inflammation via modulating miR-203-mediated
regulation of MEF2C/NF-κB signaling pathway in epilepsy. Neurochem
Res. 45:783–795. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guan H, Mei Y, Mi Y, Li C, Sun X, Zhao X,
Liu J, Cao W, Li Y and Wang Y: Downregulation of lncRNA ANRIL
suppresses growth and metastasis in human osteosarcoma cells. Onco
Targets Ther. 11:4893–4899. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang J, Sun J and Yang F: The role of long
non-coding RNA H19 in breast cancer. Oncol Lett. 19:7–16.
2020.PubMed/NCBI
|
35
|
Liu C, Jiang F, Zhang X and Xu X: Long
non-coding RNA UCA1 modulates paclitaxel resistance in breast
cancer via miR-613/CDK12 Axis. Cancer Manag Res. 12:2777–2788.
2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Y, Guo XB and Wei YH: LncRNA GAS5
affects epithelial-mesenchymal transition and invasion of breast
cancer cells by regulating miR-216b. Eur Rev Med Pharmacol Sci.
24:4873–4881. 2020.PubMed/NCBI
|
37
|
Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, Li
J, Guo Q, Gong C, Liu B and Su S: NBAT1 suppresses breast cancer
metastasis by regulating DKK1 via PRC2. Oncotarget. 6:32410–23425.
2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang Y, Zhou Y, Yang Z, Chen B, Huang W,
Liu Y and Zhang Y: MiR-204/ZEB2 axis functions as key mediator for
MALAT1-induced epithelial-mesenchymal transition in breast cancer.
Tumour Biol. 39:10104283176909982017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bida O, Gidoni M, Ideses D, Efroni S and
Ginsberg D: A novel mitosis-associated lncRNA, MA-linc1, is
required for cell cycle progression and sensitizes cancer cells to
Paclitaxel. Oncotarget. 6:27880–27890. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei F, Yang S and Wang S: MicroRNAs: A
critical regulator under mechanical force. Histol Histopathol.
33:335–342. 2018.PubMed/NCBI
|
41
|
Xie T, Wu D, Li S, Li X, Wang L, Lu Y,
Song Q, Sun X and Wang X: microRNA-582 potentiates liver and lung
metastasis of gastric carcinoma cells through the FOXO3-mediated
PI3K/Akt/Snail pathway. Cancer Manag Res. 12:5201–5212. 2020.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen ZF, Wang J, Yu Y and Wei W:
MicroRNA-936 promotes proliferation and invasion of gastric cancer
cells by down-regulating FGF2 expression and activating P13K/Akt
signaling pathway. Eur Rev Med Pharmacol Sci. 24:6707–6715.
2020.PubMed/NCBI
|
43
|
Jiang Q, Xing W, Cheng J and Yu Y:
Knockdown of lncRNA XIST suppresses cell tumorigenicity in human
non-small cell lung cancer by regulating miR-142-5p/PAX6 axis. Onco
Targets Ther. 13:4919–4929. 2020. View Article : Google Scholar : PubMed/NCBI
|