PD‑L1 expression and immune cells in anaplastic carcinoma and poorly differentiated carcinoma of the human thyroid gland: A retrospective study
- Authors:
- Soledad Cameselle‑García
- Sámer Abdulkader‑Sande
- María Sánchez‑Ares
- Gemma Rodríguez‑Carnero
- Jesús Garcia‑Gómez
- Francisco Gude‑Sampedro
- Ihab Abdulkader‑Nallib
- José Manuel Cameselle‑Teijeiro
-
Affiliations: Department of Medical Oncology, University Hospital Complex of Ourense, Galician Healthcare Service, 32005 Ourense, Spain, Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service, 15706 Santiago de Compostela, Spain, Department of Endocrinology and Nutrition, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service, 15706 Santiago de Compostela, Spain, Department of Epidemiology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service, 15706 Santiago de Compostela, Spain - Published online on: May 24, 2021 https://doi.org/10.3892/ol.2021.12814
- Article Number: 553
-
Copyright: © Cameselle‑García et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lloyd RV, Osamura RY, Klöppel G and Rosai J: WHO Classification of Tumours of Endocrine Organs. IARC; Lyon: 2017 | |
Luster M, Aktolun C, Amendoeira I, Barczyński M, Bible KC, Duntas LH, Elisei R, Handkiewicz-Junak D, Hoffmann M, Jarząb B, et al: European Perspective on 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: Proceedings of an Interactive International Symposium. Thyroid. 29:7–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, Kebebew E, Lee NY, Nikiforov YE, Rosenthal MS, et al: American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 22:1104–1139. 2012. View Article : Google Scholar : PubMed/NCBI | |
Haddad RI, Nasr C, Bischoff L, Busaidy NL, Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Goldner W, et al: NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. J Natl Compr Canc Netw. 16:1429–1440. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Leo S, Trevisan M and Fugazzola L: Recent advances in the management of anaplastic thyroid cancer. Thyroid Res. 13:172020. View Article : Google Scholar : PubMed/NCBI | |
Volante M, Collini P, Nikiforov YE, Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA, Papotti M, Sobrinho-Simoes M, et al: Poorly differentiated thyroid carcinoma: The Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 31:1256–1264. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu B and Ghossein R: Poorly differentiated thyroid carcinoma. Semin Diagn Pathol. 37:243–247. 2020. View Article : Google Scholar : PubMed/NCBI | |
Akaishi J, Kondo T, Sugino K, Ogimi Y, Masaki C, Hames KY, Yabuta T, Tomoda C, Suzuki A, Matsuzu K, et al: Prognostic impact of the Turin criteria in poorly differentiated thyroid carcinoma. World J Surg. 43:2235–2244. 2019. View Article : Google Scholar : PubMed/NCBI | |
Walczyk A, Kopczyński J, Gąsior-Perczak D, Pałyga I, Kowalik A, Chrapek M, Hejnold M, Góźdź S and Kowalska A: Histopathology and immunohistochemistry as prognostic factors for poorly differentiated thyroid cancer in a series of Polish patients. PLoS One. 15:e02292642020. View Article : Google Scholar : PubMed/NCBI | |
Dettmer M, Schmitt A, Steinert H, Haldemann A, Meili A, Moch H, Komminoth P and Perren A: Poorly differentiated thyroid carcinomas: How much poorly differentiated is needed? Am J Surg Pathol. 35:1866–1872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dettmer M, Schmitt A, Steinert H, Moch H, Komminoth P and Perren A: Poorly differentiated oncocytic thyroid carcinoma-diagnostic implications and outcome. Histopathology. 60:1045–1051. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bai S, Baloch ZW, Samulski TD, Montone KT and LiVolsi VA: Poorly differentiated oncocytic (Hürthle cell) follicular carcinoma: An institutional experience. Endocr Pathol. 26:164–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang JR, Zafereo ME, Dadu R, Ferrarotto R, Busaidy NL, Lu C, Ahmed S, Gule-Monroe MK, Williams MD, Sturgis EM, et al: Complete Surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF600E-mutated anaplastic thyroid carcinoma. Thyroid. 29:1036–1043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S, Tahara M, Ito K, Tori M, Kiyota N, Yoshida K, Sakata Y and Yoshida A: Safety and effectiveness of lenvatinib in 594 patients with unresectable thyroid cancer in an all-case post-marketing observational study in Japan. Adv Ther. 37:3850–3862. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, Haddad RI, Kraft S, Cabanillas ME, Rabinowits G, et al: Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: A phase II study. Clin Cancer Res. 24:1546–1553. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harris EJ, Hanna GJ, Chau N, Rabinowits G, Haddad R, Margalit DN, Schoenfeld J, Tishler RB, Barletta JA, Nehs M, et al: Everolimus in anaplastic thyroid cancer: A case series. Front Oncol. 9:1062019. View Article : Google Scholar : PubMed/NCBI | |
Ha HT, Lee JS, Urba S, Koenig RJ, Sisson J, Giordano T and Worden FP: A phase II study of imatinib in patients with advanced anaplastic thyroid cancer. Thyroid. 20:975–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Capdevila J, Wirth LJ, Ernst T, Ponce Aix S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto PA, et al: PD-1 Blockade in Anaplastic Thyroid Carcinoma. J Clin Oncol. 38:2620–2627. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan J, Lim KS, Mekhail T and Chang CC: Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch Pathol Lab Med. 141:851–861. 2017. View Article : Google Scholar : PubMed/NCBI | |
You W, Shang B, Sun J, Liu X, Su L and Jiang S: Mechanistic insight of predictive biomarkers for antitumor PD-1/PD-L1 blockade: A paradigm shift towards immunome evaluation (Review). Oncol Rep. 44:424–437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cantara S, Bertelli E, Occhini R, Regoli M, Brilli L, Pacini F, Castagna MG and Toti P: Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine. 64:122–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gunda V, Gigliotti B, Ndishabandi D, Ashry T, McCarthy M, Zhou Z, Amin S, Freeman GJ, Alessandrini A and Parangi S: Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br J Cancer. 119:1223–1232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, et al: Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 144:2266–2278. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moretti S, Menicali E, Nucci N, Guzzetti M, Morelli S and Puxeddu E: Therapy of endocrine disease Immunotherapy of advanced thyroid cancer: From bench to bedside. Eur J Endocrinol. 183:R41–R55. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mehnert JM, Varga A, Brose MS, Aggarwal RR, Lin CC, Prawira A, de Braud F, Tamura K, Doi T, Piha-Paul SA, et al: Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer. 19:1962019. View Article : Google Scholar : PubMed/NCBI | |
Chintakuntlawar AV, Yin J, Foote RL, Kasperbauer JL, Rivera M, Asmus E, Garces NI, Janus JR, Liu M, Ma DJ, et al: A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer. Thyroid. 29:1615–1622. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iyer PC, Dadu R, Gule-Monroe M, Busaidy NL, Ferrarotto R, Habra MA, Zafereo M, Williams MD, Gunn GB, Grosu H, et al: Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 6:682018. View Article : Google Scholar : PubMed/NCBI | |
Girolami I, Pantanowitz L, Mete O, Brunelli M, Marletta S, Colato C, Trimboli P, Crescenzi A, Bongiovanni M, Barbareschi M and Eccher A: Programmed Death-Ligand 1 (PD-L1) is a potential biomarker of disease-free survival in papillary thyroid carcinoma: A systematic review and meta-analysis of PD-L1 immunoexpression in follicular epithelial derived thyroid carcinoma. Endocr Pathol. 31:291–300. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bangaraiahgari R, Panchangam RB, Puthenveetil P, Mayilvaganan S, Bangaraiahgari R, Banala RR, Karunakaran P and Md R: Is there adenoma-carcinoma sequence between benign adenoma and papillary cancer of thyroid: A genomic linkage study. Ann Med Surg (Lond). 60:695–700. 2020. View Article : Google Scholar : PubMed/NCBI | |
Volante M, Lam AK, Papotti M and Tallini G: Molecular pathology of poorly differentiated and anaplastic thyroid cancer: What do pathologists need to know. Endocr Pathol. 32:63–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Soares P, Póvoa AA, Melo M, Vinagre J, Máximo V, Eloy C, Cameselle-Teijeiro JM and Sobrinho-Simões M: Molecular pathology of Non-familial follicular epithelial-derived thyroid cancer in adults: From RAS/BRAF-like tumor designations to molecular risk stratification. Endocr Pathol. 32:44–62. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jung SH, Kim MS, Jung CK, Park HC, Kim SY, Liu J, Bae JS, Lee SH, Kim TM, Lee SH and Chung YJ: Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget. 7:69638–69648. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9:342017. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159:676–690. 2014. View Article : Google Scholar : PubMed/NCBI | |
Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al: Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 126:1052–1066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, Rubinstein JC, Choi M, Kiss N, Nelson-Williams C, et al: Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 24:2318–2329. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riesco-Eizaguirre G and Santisteban P: Endocrine Tumours: Advances in the molecular pathogenesis of thyroid cancer: Lessons from the cancer genome. Eur J Endocrinol. 175:R203–R217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Capdevila J, Mayor R, Mancuso FM, Iglesias C, Caratù G, Matos I, Zafón C, Hernando J, Petit A, Nuciforo P, et al: Early evolutionary divergence between papillary and anaplastic thyroid cancers. Ann Oncol. 29:1454–1460. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ragazzi M, Torricelli F, Donati B, Ciarrocchi A, de Biase D, Tallini G, Zanetti E, Bisagni A, Kuhn E, Giordano D, et al: Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: Immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch. 478:265–281. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cameselle-Teijeiro JM, Rodríguez-Pérez I, Celestino R, Eloy C, Piso-Neira M, Abdulkader-Nallib I, Soares P and Sobrinho-Simões M: Hobnail variant of papillary thyroid carcinoma: Clinicopathologic and molecular evidence of progression to undifferentiated carcinoma in 2 cases. Am J Surg Pathol. 41:854–860. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ibrahimpasic T, Ghossein R, Shah JP and Ganly I: Poorly Differentiated carcinoma of the thyroid gland: Current status and future prospects. Thyroid. 29:311–321. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al: Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 10:27642019. View Article : Google Scholar : PubMed/NCBI | |
Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, Shah JP, Singh B and Ghossein RA: Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: A clinicopathologic study of 58 patients. Cancer. 106:1286–1295. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gerber TS, Schad A, Hartmann N, Springer E, Zechner U and Musholt TJ: Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. Endocr Connect. 7:47–55. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cunha LL, Marcello MA, Morari EC, Nonogaki S, Conte FF, Gerhard R, Soares FA, Vassallo J and Ward LS: Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer. 20:103–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim JS, Kim JH, Choe JH, Shin JH, Hahn SY, et al: Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 24:97–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, Ralhan R and Walfish PG: Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 7:32318–32328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aghajani M, Graham S, McCafferty C, Shaheed CA, Roberts T, DeSouza P, Yang T and Niles N: Clinicopathologic and prognostic significance of programmed cell death ligand 1 expression in patients with non-medullary thyroid cancer: A systematic review and meta-analysis. Thyroid. 28:349–361. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum MW, Gigliotti BJ, Pai SI, Parangi S, Wachtel H, Mino-Kenudson M, Gunda V and Faquin WC: PD-L1 and IDO1 are expressed in poorly differentiated thyroid carcinoma. Endocr Pathol. 29:59–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Sun Y, Ye H, Yang S, Lee SL and de las Morenas A: Anaplastic thyroid cancer: Outcome and the mutation/expression profiles of potential targets. Pathol Oncol Res. 21:695–701. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zwaenepoel K, Jacobs J, De Meulenaere A, Silence K, Smits E, Siozopoulou V, Hauben E, Rolfo C, Rottey S and Pauwels P: CD70 and PD-L1 in anaplastic thyroid cancer-promising targets for immunotherapy. Histopathology. 71:357–365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, Davies KD, Raeburn CD, McIntyre RC Jr, Haugen BR and French JD: Tumor-Infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab. 101:2863–2873. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chintakuntlawar AV, Rumilla KM, Smith CY, Jenkins SM, Foote RL, Kasperbauer JL, Morris JC, Ryder M, Alsidawi S, Hilger C and Bible KC: Expression of PD-1 and PD-L1 in anaplastic thyroid cancer patients treated with multimodal therapy: Results from a retrospective study. J Clin Endocrinol Metab. 102:1943–1950. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kollipara R, Schneider B, Radovich M, Babu S and Kiel PJ: Exceptional response with immunotherapy in a patient with anaplastic thyroid cancer. Oncologist. 22:1149–1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aghajani MJ, Cooper A, McGuire H, Jeffries T, Saab J, Ismail K, de Souza P, Bray V, Fazekas de St Groth B, Niles N and Roberts TL: Pembrolizumab for anaplastic thyroid cancer: A case study. Cancer Immunol Immunother. 68:1921–1934. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stenman A, Hellgren LS, Jatta K, Hysek M, Zemmler M, Altena R, Nilsson IL, Bränström R, Zedenius J and Juhlin CC: Metastatic anaplastic thyroid carcinoma in complete remission: Morphological, molecular, and clinical work-up of a rare case. Endocr Pathol. 31:77–83. 2020. View Article : Google Scholar : PubMed/NCBI | |
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L, Kaufman HL, et al: Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duval A and Hamelin R: Mutations at coding repeat sequences in mismatch repair-deficient human cancers: Toward a new concept of target genes for instability. Cancer Res. 62:2447–2454. 2002.PubMed/NCBI | |
Peltomäki P: Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 21:1174–1179. 2003. View Article : Google Scholar | |
Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ, Kwint MP, Hoogerbrugge N, Nagtegaal ID and Ligtenberg MJ: Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 146:643–646 e8. 2014. View Article : Google Scholar : PubMed/NCBI | |
Briggs S and Tomlinson I: Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol. 230:148–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, et al: DNA polymerase epsilon and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet. 22:2820–2828. 2013. View Article : Google Scholar : PubMed/NCBI | |
Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, Fessler E, Medema JP, Boot A, Morreau H, et al: Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: A retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 1:207–216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, et al: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499:214–218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poulos RC, Wong YT, Ryan R, Pang H and Wong JWH: Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations. PLoS Genet. 14:e10077792018. View Article : Google Scholar : PubMed/NCBI | |
Ahn J, Jin M, Song E, Ryu YM, Song DE, Kim SY, Kim TY, Kim WB, Shong YK, Jeon MJ and Kim WG: Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry. Thyroid. 31:61–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, et al: Immune and inflammatory cells in thyroid cancer microenvironment. Int J Mol Sci. 20:44132019. View Article : Google Scholar : PubMed/NCBI | |
French JD, Weber ZJ, Fretwell DL, Said S, Klopper JP and Haugen BR: Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J Clin Endocrinol Metab. 95:2325–2333. 2010. View Article : Google Scholar : PubMed/NCBI | |
French JD, Kotnis GR, Said S, Raeburn CD, McIntyre RC Jr, Klopper JP and Haugen BR: Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J Clin Endocrinol Metab. 97:E934–E943. 2012. View Article : Google Scholar : PubMed/NCBI | |
Severson JJ, Serracino HS, Mateescu V, Raeburn CD, McIntyre RC Jr, Sams SB, Haugen BR and French JD: PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunol Res. 3:620–630. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hilly O, Koren R, Raz R, Rath-Wolfson L, Mizrachi A, Hamzany Y, Bachar G and Shpitzer T: The role of s100-positive dendritic cells in the prognosis of papillary thyroid carcinoma. Am J Clin Pathol. 139:87–92. 2013. View Article : Google Scholar : PubMed/NCBI | |
Caillou B, Talbot M, Weyemi U, Pioche-Durieu C, Al Ghuzlan A, Bidart JM, Chouaib S, Schlumberger M and Dupuy C: Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS One. 6:e225672011. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Ye L, Shen L, Cai J, Huang F, Wei Q, Fei X, Chen X, Guan H, Wang W, et al: Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis. 35:1780–1787. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A and Di W: A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 7:192014. View Article : Google Scholar : PubMed/NCBI | |
Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC, Chen YY, Liu YC, Hong TH, Yu SL, Chen JJ and Yang PC: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep. 5:142732015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang P and Xu Y: Prognostic value of programmed cell death ligand 1 expression in patients with head and neck cancer: A systematic review and meta-analysis. PLoS One. 12:e01795362017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Liu F and Liu L: Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine (Baltimore). 96:e63692017. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Xu L, Wang Q, An G, Feng G and Liu F: Clinicopathological and prognostic value of programmed death ligand-1 (PD-L1) in renal cell carcinoma: A meta-analysis. Int J Clin Exp Med. 8:14595–14603. 2015.PubMed/NCBI | |
Powles T, Walker J, Andrew Williams J and Bellmunt J: The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat Rev. 82:1019252020. View Article : Google Scholar : PubMed/NCBI | |
Pan ZK, Ye F, Wu X, An HX and Wu JX: Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: A meta-analysis. J Thorac Dis. 7:462–470. 2015.PubMed/NCBI | |
Siraj AK, Parvathareddy SK, Annaiyappanaidu P, Haqawi W, Al-Rasheed M, AlManea HM, AlHussaini HF, Al-Dayel F and Al-Kuraya KS: PD-L1 expression is associated with deficient mismatch repair and poor prognosis in middle eastern colorectal cancers. J Pers Med. 11:732021. View Article : Google Scholar : PubMed/NCBI | |
Walter D, Herrmann E, Schnitzbauer AA, Zeuzem S, Hansmann ML, Peveling-Oberhag J and Hartmann S: PD-L1 expression in extrahepatic cholangiocarcinoma. Histopathology. 71:383–392. 2017. View Article : Google Scholar : PubMed/NCBI |