1
|
Mitry MA and Edwards JG: Doxorubicin
induced heart failure: Phenotype and molecular mechanisms. Int J
Cardiol Heart Vasc. 10:17–24. 2016.PubMed/NCBI
|
2
|
Koleini N and Kardami E: Autophagy and
mitophagy in the context of doxorubicin-induced cardiotoxicity.
Oncotarget. 8:46663–46680. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhu HJ, Han ZY, He SF, Jin SY, Xu SJ, Fang
XD and Zhang Y: Specific MicroRNAs comparisons in hypoxia and
morphine preconditioning against hypoxia-reoxgenation injury with
and without heart failure. Life Sci. 170:82–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li N, Wang WB, Bao H, Shi Q, Jiang ZL, Qi
YX and Han Y: MicroRNA-129-1-3p regulates cyclic stretch-induced
endothelial progenitor cell differentiation by targeting Runx2. J
Cell Biochem. 120:5256–5267. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu L, Yuan Y, He X, Xia X and Mo X:
MicroRNA-1 upregulation promotes myocardiocyte proliferation and
suppresses apoptosis during heart development. Mol Med Rep.
15:2837–2842. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ren N and Wang M: microRNA-212-induced
protection of the heart against myocardial infarction occurs via
the interplay between AQP9 and PI3K/Akt signaling pathway. Exp Cell
Res. 370:531–541. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guo L, Zheng X, Wang E, Jia X, Wang G and
Wen J: Irigenin treatment alleviates doxorubicin (DOX)-induced
cardiotoxicity by suppressing apoptosis, inflammation and oxidative
stress via the increase of miR-425. Biomed Pharmacother.
125:1097842020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ji X, Ding W, Xu T, Zheng X, Zhang J, Liu
M, Liu G and Wang J: MicroRNA-31-5p attenuates doxorubicin-induced
cardiotoxicity via quaking and circular RNA Pan3. J Mol Cell
Cardiol. 140:56–67. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fu J, Peng C, Wang W, Jin H, Tang Q and
Wei X: Let-7 g is involved in doxorubicin induced myocardial
injury. Environ Toxicol Pharmacol. 33:312–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li N, Zhou H and Tang Q: miR-133: A
suppressor of cardiac remodeling? Front Pharmacol. 9:9032018.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei
HW, Yang H, Lin QX, Gou DM, Wu SL and Shan ZX: Activation of
miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced
cardiotoxicity. Sci Rep. 7:118792017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L
and Peng J: MicroRNA-140-5p aggravates doxorubicin-induced
cardiotoxicity by promoting myocardial oxidative stress via
targeting Nrf2 and Sirt2. Redox Biol. 15:284–296. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ruggeri C, Gioffré S, Achilli F, Colombo
GI and D'Alessandra Y: Role of microRNAs in doxorubicin-induced
cardiotoxicity: An overview of preclinical models and cancer
patients. Heart Fail Rev. 23:109–122. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Andrews S: FastQC: A quality control tool
for high throughput sequence data. 2010.http://www.bioinformatics.babraham.ac.uk/projects/fastqc/April
26–2010
|
16
|
Langmead B and Salzberg SL: Fast
gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Buermans HP, Ariyurek Y, van Ommen G, den
Dunnen JT't and Hoen PA: New methods for next generation sequencing
based microRNA expression profiling. BMC Genomics. 11:7162010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Legrain P and Rain JC: Twenty years of
protein interaction studies for biological function deciphering. J
Proteomics. 107:93–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee H, Han S, Kwon CS and Lee D:
Biogenesis and regulation of the let-7 miRNAs and their functional
implications. Protein Cell. 7:100–113. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Desai VG, C Kwekel J, Vijay V, Moland CL,
Herman EH, Lee T, Han T, Lewis SM, Davis KJ, Muskhelishvili L, et
al: Early biomarkers of doxorubicin-induced heart injury in a mouse
model. Toxicol Appl Pharmacol. 281:221–229. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vacchi-Suzzi C, Bauer Y, Berridge BR,
Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J,
Paules RS, et al: Perturbation of microRNAs in rat heart during
chronic doxorubicin treatment. PLoS One. 7:e403952012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Roca-Alonso L, Castellano L, Mills A,
Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell
J, Coombes RC, et al: Myocardial MiR-30 downregulation triggered by
doxorubicin drives alterations in β-adrenergic signaling and
enhances apoptosis. Cell Death Dis. 6:e17542015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang
F and Tao L: MiR-145-5p regulates hypoxia-induced inflammatory
response and apoptosis in cardiomyocytes by targeting CD40. Mol
Cell Biochem. 431:123–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Toro R, Blasco-Turrión S, Morales-Ponce
FJ, Gonzalez P, Martínez-Camblor P, López-Granados A, Brugada R,
Campuzano O, Pérez-Serra A, Rosa Longobardo F, et al: Plasma
microRNAs as biomarkers for Lamin A/C-related dilated
cardiomyopathy. J Mol Med (Berl). 96:845–856. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
da Silva W, dos Santos RA and Moraes KC:
Mir-351-5p contributes to the establishment of a pro-inflammatory
environment in the H9c2 cell line by repressing PTEN expression.
Mol Cell Biochem. 411:363–371. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Billia F, Hauck L, Konecny F, Rao V, Shen
J and Mak TW: PTEN-inducible kinase 1 (PINK1)/Park6 is
indispensable for normal heart function. Proc Natl Acad Sci USA.
108:9572–9577. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gao Y, Chu M, Hong J, Shang J and Xu D:
Hypoxia induces cardiac fibroblast proliferation and phenotypic
switch: A role for caveolae and caveolin-1/PTEN mediated pathway. J
Thorac Dis. 6:1458–1468. 2014.PubMed/NCBI
|
30
|
Zheng L, Han X, Hu Y, Zhao X, Yin L, Xu L,
Qi Y, Xu Y, Han X, Liu K and Peng J: Dioscin ameliorates intestinal
ischemia/reperfusion injury via adjusting
miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacol
Res. 139:431–439. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hu Y, Mao Z, Xu L, Yin L, Tao X, Tang Z,
Qi Y, Sun P and Peng J: Protective effect of dioscin against
intestinal ischemia/reperfusion injury via adjusting
miR-351-5p-mediated oxidative stress. Pharmacol Res. 137:56–63.
2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Venkatakrishnan CD, Tewari AK, Moldovan L,
Cardounel AJ, Zweier JL, Kuppusamy P and Ilangovan G: Heat shock
protects cardiac cells from doxorubicin-induced toxicity by
activating p38 MAPK and phosphorylation of small heat shock protein
27. Am J Physiol Heart Circ Physiol. 291:H2680–H2691. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo R, Wu K, Chen J, Mo L, Hua X, Zheng D,
Chen P, Chen G, Xu W and Feng J: Exogenous hydrogen sulfide
protects against doxorubicin-induced inflammation and cytotoxicity
by inhibiting p38MAPK/NFκB pathway in H9c2 cardiac cells. Cell
Physiol Biochem. 32:1668–1680. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nishimura Y, Kondo C, Morikawa Y, Tonomura
Y, Torii M, Yamate J and Uehara T: Plasma miR-208 as a useful
biomarker for drug-induced cardiotoxicity in rats. J Appl Toxicol.
35:173–180. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rigaud VO, Ferreira LR, Ayub-Ferreira SM,
Ávila MS, Brandão SM, Cruz FD, Santos MH, Cruz CB, Alves MS, Issa
VS, et al: Circulating miR-1 as a potential biomarker of
doxorubicin-induced cardiotoxicity in breast cancer patients.
Oncotarget. 8:6994–7002. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cappetta D, Rossi F, Piegari E, Quaini F,
Berrino L, Urbanek K and De Angelis A: Doxorubicin targets multiple
players: A new view of an old problem. Pharmacol Res. 127:4–14.
2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dupuy AM, Kuster N, Curinier C, Huet F,
Plawecki M, Solecki K, Roubille F and Cristol JP: Exploring
collagen remodeling and regulation as prognosis biomarkers in
stable heart failure. Clin Chim Acta. 490:167–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nagao K, Inada T, Tamura A, Kajitani K,
Shimamura K, Yukawa H, Aida K, Sowa N, Nishiga M, Horie T, et al:
Circulating markers of collagen types I, III, and IV in patients
with dilated cardiomyopathy: Relationships with myocardial collagen
expression. ESC Heart Fail. 5:1044–1051. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhou S, Lei D, Bu F, Han H, Zhao S and
Wang Y: MicroRNA-29b-3p targets SPARC gene to protect cardiocytes
against autophagy and apoptosis in hypoxic-induced H9c2 cells. J
Cardiovasc Transl Res. 12:358–365. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Han Z, Zhang T, He Y, Li G, Li G and Jin
X: Inhibition of prostaglandin E2 protects abdominal aortic
aneurysm from expansion through regulating miR-29b-mediated
fibrotic ECM expression. Exp Ther Med. 16:155–160. 2018.PubMed/NCBI
|
41
|
Drummond CA, Fan X, Haller ST, Kennedy DJ,
Liu J and Tian J: Na/K-ATPase signaling mediates miR-29b-3p
regulation and cardiac fibrosis formation in mice with chronic
kidney disease. PLoS One. 13:e01976882018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang WG, Chen L, Dong Q, He J, Zhao HD,
Li FL and Li H: Mmu-miR-702 functions as an anti-apoptotic mirtron
by mediating ATF6 inhibition in mice. Gene. 531:235–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim BM and Choi MY: Non-canonical
microRNAs miR-320 and miR-702 promote proliferation in
Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun.
426:183–189. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huang W, Feng Y, Liang J, Yu H, Wang C,
Wang B, Wang M, Jiang L, Meng W, Cai W, et al: Loss of microRNA-128
promotes cardiomyocyte proliferation and heart regeneration. Nat
Commun. 9:7002018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kuppusamy KT, Jones DC, Sperber H, Madan
A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X,
et al: Let-7 family of microRNA is required for maturation and
adult-like metabolism in stem cell-derived cardiomyocytes. Proc
Natl Acad Sci USA. 112:E2785–E2794. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Du Y, Zhang M, Zhao W, Shu Y, Gao M,
Zhuang Y, Yang T, Mu W, Li T, Li X, et al: Let-7a regulates
expression of β1-adrenoceptors and forms a negative feedback
circuit with the β1-adrenoceptor signaling pathway in chronic
ischemic heart failure. Oncotarget. 8:8752–8764. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li X, Wang B, Cui H, Du Y, Song Y, Yang L,
Zhang Q, Sun F, Luo D, Xu C, et al: let-7e replacement yields
potent anti-arrhythmic efficacy via targeting beta 1-adrenergic
receptor in rat heart. J Cell Mol Med. 18:1334–1343. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y
and Zhou HH: Let-7 in cardiovascular diseases, heart development
and cardiovascular differentiation from stem cells. Int J Mol Sci.
14:23086–23102. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tolonen AM, Magga J, Szabó Z, Viitala P,
Gao E, Moilanen AM, Ohukainen P, Vainio L, Koch WJ, Kerkelä R, et
al: Inhibition of Let-7 microRNA attenuates myocardial remodeling
and improves cardiac function postinfarction in mice. Pharmacol Res
Perspect. 2:e000562014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fang J, Song XW, Tian J, Chen HY, Li DF,
Wang JF, Ren AJ, Yuan WJ and Lin L: Overexpression of microRNA-378
attenuates ischemia-induced apoptosis by inhibiting caspase-3
expression in cardiac myocytes. Apoptosis. 17:410–423. 2012.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan
L, Ding Z, Wu J, Kang L, Zhang X, et al: MicroRNA-378 suppresses
myocardial fibrosis through a paracrine mechanism at the early
stage of cardiac hypertrophy following mechanical stress.
Theranostics. 8:2565–2582. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ganesan J, Ramanujam D, Sassi Y, Ahles A,
Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L,
et al: MiR-378 controls cardiac hypertrophy by combined repression
of mitogen-activated protein kinase pathway factors. Circulation.
127:2097–2106. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kobashigawa LC, Xu YC, Padbury JF, Tseng
YT and Yano N: Metformin protects cardiomyocyte from doxorubicin
induced cytotoxicity through an AMP-activated protein kinase
dependent signaling pathway: An in vitro study. PLoS One.
9:e1048882014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liu X, Wei J, Ma Z and He Y: Rapamycin-
and starvation-induced autophagy are associated with miRNA
dysregulation in A549 cells. Acta Biochim Biophys Sin (Shanghai).
51:393–401. 2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kim JH, Lee DK, Kim J, Choi S, Park W, Ha
KS, Kim TH, Choe J, Won MH, Kwon YG and Kim YM: A miRNA-101-3p/Bim
axis as a determinant of serum deprivation-induced endothelial cell
apoptosis. Cell Death Dis. 8:e28082017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wu J, Sun C, Wang R, Li J, Zhou M, Yan M,
Xue X and Wang C: Cardioprotective effect of paeonol against
epirubicin-induced heart injury via regulating miR-1 and PI3K/AKT
pathway. Chem Biol Interact. 286:17–25. 2018. View Article : Google Scholar : PubMed/NCBI
|