1
|
Schwartz SI: Myeloproliferative disorders.
Ann Surg. 182:464–471. 1975. View Article : Google Scholar : PubMed/NCBI
|
2
|
Goldman JM: Chronic myeloid leukemia: A
historical perspective. Semin Hematol. 47:302–311. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deininger MW, Goldman JM and Melo JV: The
molecular biology of chronic myeloid leukemia. Blood. 96:3343–3356.
2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen Y, Peng C, Sullivan C, Li D and Li S:
Critical molecular pathways in cancer stem cells of chronic myeloid
leukemia. Leukemia. 24:1545–1554. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang H and Li S: Molecular mechanisms for
survival regulation of chronic myeloid leukemia stem cells. Protein
Cell. 4:186–196. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kam RK, Deng Y, Chen Y and Zhao H:
Retinoic acid synthesis and functions in early embryonic
development. Cell Biosci. 2:112012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang R, Wang Y, Li R and Chen G:
Transcriptional factors mediating retinoic acid signals in the
control of energy metabolism. Int J Mol Sci. 16:14210–14244. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Theodosiou M, Laudet V and Schubert M:
From carrot to clinic: An overview of the retinoic acid signaling
pathway. Cell Mol Life Sci. 67:1423–1445. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Connolly RM, Nguyen NK and Sukumar S:
Molecular pathways: Current role and future directions of the
retinoic acid pathway in cancer prevention and treatment. Clin
Cancer Res. 19:1651–1659. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lotan R, Xu XC, Lippman SM, Ro JY, Lee JS,
Lee JJ and Hong WK: Suppression of retinoic acid receptor-beta in
premalignant oral lesions and its up-regulation by isotretinoin. N
Engl J Med. 332:1405–1410. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Arrieta O, Gonzalez-De la Rosa CH,
Arechaga-Ocampo E, Villanueva-Rodriguez G, Ceron-Lizarraga TL,
Martinez-Barrera L, Vázquez-Manríquez ME, Ríos-Trejo MA,
Alvarez-Avitia MA, Hernández-Pedro N, et al: Randomized phase II
trial of All-trans-retinoic acid with chemotherapy based on
paclitaxel and cisplatin as first-line treatment in patients with
advanced non-small-cell lung cancer. J Clin Oncol. 28:3463–3471.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sutton LM, Warmuth MA, Petros WP and Winer
EP: Pharmacokinetics and clinical impact of all-trans retinoic acid
in metastatic breast cancer: A phase II trial. Cancer Chemother
Pharmacol. 40:335–341. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Degos L and Wang ZY: All trans retinoic
acid in acute promyelocytic leukemia. Oncogene. 20:7140–7145. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lo-Coco F, Avvisati G, Vignetti M, Thiede
C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona
E, et al: Retinoic acid and arsenic trioxide for acute
promyelocytic leukemia. N Engl J Med. 369:111–121. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Borrow J, Goddard AD, Sheer D and Solomon
E: Molecular analysis of acute promyelocytic leukemia breakpoint
cluster region on chromosome 17. Science. 249:1577–1580. 1990.
View Article : Google Scholar : PubMed/NCBI
|
16
|
el-Deiry WS, Tokino T, Velculescu VE, Levy
DB, Parsons R, Trent JM, Lin D, Mercer ME, Kinzler KW and
Vogelstein B: WAF1, a potential mediator of p53 tumor suppression.
Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI
|
17
|
Choi Y, Kim SY, Kim SH, Yang J, Park K and
Byun Y: Inhibition of tumor growth by biodegradable microspheres
containing all-trans-retinoic acid in a human head-and-neck cancer
xenograft. Int J Cancer. 107:145–148. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Masetti R, Biagi C, Zama D, Vendemini F,
Martoni A, Morello W, Gasperini P and Pession A: Retinoids in
pediatric onco-hematology: The model of acute promyelocytic
leukemia and neuroblastoma. Adv Ther. 29:747–762. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dayon A, Brizuela L, Martin C, Mazerolles
C, Pirot N, Doumerc N, Nogueira L, Golzio M, Teissié J, Serre G, et
al: Sphingosine kinase-1 is central to androgen-regulated prostate
cancer growth and survival. PLoS One. 4:e80482009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sukocheva O, Wang L, Verrier E, Vadas MA
and Xia P: Restoring endocrine response in breast cancer cells by
inhibition of the sphingosine kinase-1 signaling pathway.
Endocrinology. 150:4484–4492. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu H, Toman RE, Goparaju SK, Maceyka M,
Nava VE, Sankala H, Payne SG, Bektas M, Ishii I, Chun J, et al:
Sphingosine kinase type 2 is a putative BH3-only protein that
induces apoptosis. J Biol Chem. 278:40330–40336. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sobue S, Iwasaki T, Sugisaki C, Nagata K,
Kikuchi R, Murakami M, Takagi A, Kojima T, Banno Y, Akao Y, et al:
Quantitative RT-PCR analysis of sphingolipid metabolic enzymes in
acute leukemia and myelodysplastic syndromes. Leukemia.
20:2042–2046. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Datta A, Loo SY, Huang B, Wong L, Tan SS,
Tan TZ, Lee SC, Thiery JP, Lim YC, Yong WP, Lam Y, Kumar AP and Yap
CT: SPHK1 regulates proliferation and survival responses in
triple-negative breast cancer. Oncotarget. 5:5920–5933. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Igarashi N, Okada T, Hayashi S, Fujita T,
Jahangeer S and Nakamura S: Sphingosine kinase 2 is a nuclear
protein and inhibits DNA synthesis. J Biol Chem. 278:46832–46839.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Illuzzi G, Bernacchioni C, Aureli M,
Prioni S, Frera G, Donati C, Valsecchi M, Chigorno V, Bruni P,
Sonnino S and Prinetti A: Sphingosine kinase mediates resistance to
the synthetic retinoid N-(4-hydroxyphenyl)retinamide in human
ovarian cancer cells. J Biol Chem. 285:18594–18602. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun DF, Gao ZH, Liu HP, Yuan Y and Qu XJ:
Sphingosine 1-phosphate antagonizes the effect of all-trans
retinoic acid (ATRA) in a human colon cancer cell line by
modulation of RARβ expression. Cancer Lett. 319:182–189. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li QF, Huang WR, Duan HF, Wang H, Wu CT
and Wang LS: Sphingosine kinase-1 mediates BCR/ABL-induced
upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene.
26:7904–7908. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Salas A, Ponnusamy S, Senkal CE,
Meyers-Needham M, Selvam SP, Saddoughi SA, Apohan E, Sentelle RD,
Smith C, Gault CR, et al: Sphingosine kinase-1 and sphingosine
1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug
resistance by modulation of protein phosphatase 2A. Blood.
117:5941–5952. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kalle AM, Sachchidanand S and Pallu R:
Bcr-Abl-independent mechanism of resistance to imatinib in K562
cells: Induction of cyclooxygenase-2 (COX-2) by histone
deacetylases (HDACs). Leukemia Res. 34:1132–1138. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Malyarenko TV, Kicha AA, Ivanchina NV,
Kalinovsky AI, Popov RS, Vishchuk OS and Stonik VA: Asterosaponins
from the Far Eastern starfish Leptasterias ochotensis and their
anticancer activity. Steroids. 87:119–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kurie JM, Buck J, Eppinger TM, Moy D and
Dmitrovsky E: 9-cis and all-trans retinoic acid induce a similar
phenotype in human teratocarcinoma cells. Differentiation.
54:123–129. 1993. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ozpolat B, Mehta K, Tari AM and
Lopez-Berestein G: All-trans-Retinoic acid-induced expression and
regulation of retinoic acid 4-hydroxylase (CYP26) in human
promyelocytic leukemia. Am J Hematol. 70:39–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pitson SM, Powell JA and Bonder CS:
Regulation of sphingosine kinase in hematological malignancies and
other cancers. Anticancer Agents Med Chem. 11:799–809. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sobue S, Nemoto S, Murakami M, Ito H,
Kimura A, Gao S, Furuhata A, Takagi A, Kojima T, Nakamura M, et al:
Implications of sphingosine kinase 1 expression level for the
cellular sphingolipid rheostat: Relevance as a marker for
daunorubicin sensitivity of leukemia cells. Int J Hematol.
87:266–275. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bonhoure E, Pchejetski D, Aouali N,
Morjani H, Levade T, Kohama T and Cuvillier O: Overcoming
MDR-associated chemoresistance in HL-60 acute myeloid leukemia
cells by targeting shingosine kinase-1. Leukemia. 20:95–102. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Powell JA, Lewis AC, Zhu W, Toubia J,
Pitman MR, Wallington-Beddoe CT, Moretti PA, Iarossi D, Samaraweera
SE, Cummings N, et al: Targeting sphingosine kinase 1 induces
MCL1-dependent cell death in acute myeloid leukemia. Blood.
129:771–782. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pitson SM, Xia P, Leclercq TM, Moretti PA,
Zebol JR, Lynn HE, Wattenberg BW and Vadas MA:
Phosphorylation-dependent translocation of sphingosine kinase to
the plasma membrane drives its oncogenic signalling. J Exp Med.
201:49–54. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Recchia F, Saggio G, Nuzzo A, Biondi E, Di
Blasio A, Cesta A, Candeloro G, Alesse E and Rea S: Multicenter
phase 2 study of interleukin-2 and 13-cis retinoic acid as
maintenance therapy in advanced non-small-cell lung cancer. J
Immunother. 29:87–94. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wakelee HA, Takimoto CH, Lopez-Anaya A,
Chu Q, Middleton G, Dunlop D, Ramlau R, Leighl N, Rowinsky EK, Hao
D, et al: The effect of bexarotene on atorvastatin
pharmacokinetics: Results from a phase I trial of bexarotene plus
chemotherapy in patients with advanced non-small cell lung cancer.
Cancer Chemother. Pharmacol. 69:563–571. 2012.PubMed/NCBI
|
40
|
Montesano R and Soulié P: Retinoids induce
lumen morphogenesis in mammary epithelial cells. J Cell Sci.
115((Pt 23)): 4419–4431. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
de The H, Vivanco-Ruiz MM, Tiollais P,
Stunnenberg H and Dejean A: Identification of a retinoic acid
responsive element in the retinoic acid receptor beta gene. Nature.
343:177–180. 1990. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhou T, Medeiros LJ and Hu S: Chronic
myeloid leukemia: Beyond BCR-ABL1. Curr Hematol Malig Rep.
13:435–445. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Caldemeyer L, Dugan M, Edwards J and Akard
L: Long-term side effects of tyrosine kinase inhibitors in chronic
myeloid leukemia. Curr Hematol Malig Rep. 11:71–79. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ren R: Mechanisms of BCR-ABL in the
pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer.
5:172–183. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Thao NP, Cuong NX, Luyen BT, Thanh NV,
Nhiem NX, Koh YS, Ly BM, Nam NH, Kiem PV, Minh CV and Kim YH:
Anti-inflammatory asterosaponins from the starfish Astropecten
monacanthus. J Nat Prod. 76:1764–1770. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ngoan BT, HanhT T, Vien le T, Diep CN,
Thao NP, Thao do T, Thanh NV, Cuong NX, Nam NH, Thung do C, et al:
Asterosaponins and glycosylated polyhydroxysteroids from the
starfish Culcita novaeguineae and their cytotoxic activities. J
Asian Nat Prod Res. 17:1010–1017. 2015. View Article : Google Scholar : PubMed/NCBI
|