C1GALT1 in health and disease (Review)
- Authors:
- Xiaojie Sun
- Mengru Zhan
- Xun Sun
- Wanqi Liu
- Xiangwei Meng
-
Affiliations: Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: June 6, 2021 https://doi.org/10.3892/ol.2021.12850
- Article Number: 589
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Apweiler R, Hermjakob H and Sharon N: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1473:4–8. 1999. View Article : Google Scholar : PubMed/NCBI | |
Theodoratou E, Thaçi K, Agakov F, Timofeeva MN, Štambuk J, Pučić-Baković M, Vučković F, Orchard P, Agakova A, Din FV, et al: Glycosylation of plasma IgG in colorectal cancer prognosis. Sci Rep. 6:280982016. View Article : Google Scholar : PubMed/NCBI | |
Vajaria BN and Patel PS: Glycosylation: A hallmark of cancer. Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–3589. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, Liu F, Yang F, Sato T, Narimatsu H and Zhang Y: Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochim Biophys Acta Gen Subj. 1863:870–882. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian E and Ten Hagen KG: Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J. 26:325–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kudelka MR, Antonopoulos A, Wang Y, Duong DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD and Ju T: Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nat Methods. 13:81–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gupta R, Leon F, Rauth S, Batra SK and Ponnusamy MP: A Systematic review on the implications of O-linked glycan branching and truncating enzymes on cancer progression and metastasis. Cells. 9:4462020. View Article : Google Scholar : PubMed/NCBI | |
Cervoni GE, Cheng JJ, Stackhouse KA, Heimburg-Molinaro J and Cummings RD: O-glycan recognition and function in mice and human cancers. Biochem J. 477:1541–1564. 2020. View Article : Google Scholar : PubMed/NCBI | |
Joshi HJ, Narimatsu Y, Schjoldager KT, Tytgat H, Aebi M, Clausen H and Halim A: SnapShot: O-Glycosylation pathways across kingdoms. Cell. 172:632.e22018. View Article : Google Scholar : PubMed/NCBI | |
Li LX, Ashikov A, Liu H, Griffith CL, Bakker H and Doering TL: Cryptococcus neoformans UGT1 encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology. 27:87–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–56. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin MC, Chien PH, Wu HY, Chen ST, Juan HF, Lou PJ and Huang MC: C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene. 37:5780–5793. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saeland E, Belo AI, Mongera S, van Die I, Meijer GA and van Kooyk Y: Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 131:117–128. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Brewer K, D'Souza A, Cummings RD and Canfield WM: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 277:178–186. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tran DT and Ten Hagen KG: Mucin-type O-glycosylation during development. J Biol Chem. 288:6921–6929. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tu L and Banfield DK: Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci. 67:29–41. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aryal RP, Ju T and Cummings RD: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem. 285:2456–2462. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guzman-Aranguez A and Argüeso P: Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf. 8:8–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD and McEver RP: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol. 164:451–459. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, et al: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest. 118:3725–3737. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Wang SW, Chen CW, Huang MR, Hung JS, Huang HC, Lin HH, Chen RJ, Shyu MK and Huang MC: MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol Oncol. 128:560–567. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Hsiao SM, Chang TC, Wu WY and Lin HH: Clinical and urodynamic effects of baclofen in women with functional bladder outlet obstruction: Preliminary report. J Obstet Gynaecol Res. 42:560–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Dong W, Zhou H, Li H, Wang N, Miao X and Jia L: α-2,8-Sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life. 67:77–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Miao X, Ma Q, Zheng W, Zhou H and Jia L: Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life. 65:409–422. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH and Huang MC: C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 73:5580–5590. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH and Huang MC: C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene. 39:2724–2740. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM and Huang MC: C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One. 9:e949952014. View Article : Google Scholar : PubMed/NCBI | |
Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, et al: Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in Mice. Gastroenterology. 155:1608–1624. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W and Xia L: Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med. 217:e201823252020. View Article : Google Scholar : PubMed/NCBI | |
Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, et al: Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc Natl Acad Sci USA. 103:16442–16447. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Xia B, Aryal RP, Wang W, Wang Y, Ding X, Mi R, He M and Cummings RD: A novel fluorescent assay for T-synthase activity. Glycobiology. 21:352–362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lowe JB and Marth JD: A genetic approach to Mammalian glycan function. Annu Rev Biochem. 72:643–691. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 8:1888–1896. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ju T and Cummings RD: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 99:16613–16618. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xia L and McEver RP: Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 416:314–331. 2006. View Article : Google Scholar : PubMed/NCBI | |
Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, et al: Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 299:247–251. 2003. View Article : Google Scholar : PubMed/NCBI | |
Anderson WA and Spielman A: Permeability of the ovarian follicle of Aedes aegypti mosquitoes. J Cell Biol. 50:201–221. 1971. View Article : Google Scholar : PubMed/NCBI | |
Batista F, Lu L, Williams SA and Stanley P: Complex N-glycans are essential, but core 1 and 2 mucin O-glycans, O-fucose glycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol Reprod. 86:1792012. View Article : Google Scholar : PubMed/NCBI | |
Berkholtz CB, Lai BE, Woodruff TK and Shea LD: Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol. 126:583–592. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, Ohkohchi N, et al: C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 122:1649–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kerjaschki D, Sharkey DJ and Farquhar MG: Identification and characterization of podocalyxin-the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 98:1591–1596. 1984. View Article : Google Scholar : PubMed/NCBI | |
Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T and McNagny KM: Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med. 194:13–27. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pirulli D, Crovella S, Ulivi S, Zadro C, Bertok S, Rendine S, Scolari F, Foramitti M, Ravani P, Roccatello D, et al: Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J Nephrol. 22:152–159. 2009.PubMed/NCBI | |
Zhou FD, Zhao MH, Zou WZ, Liu G and Wang H: The changing spectrum of primary glomerular diseases within 15 years: A survey of 3331 patients in a single Chinese centre. Nephrol Dial Transplant. 24:870–876. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li LS and Liu ZH: Epidemiologic data of renal diseases from a single unit in China: Analysis based on 13,519 renal biopsies. Kidney Int. 66:920–923. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Xu J, Ren H, Zhang W, Xu Y, Shen P, Li X, Wang W, Chen X, Wu P, et al: Changing spectrum of biopsy-proven primary glomerular diseases over the past 15 years: A single-center study in China. Contrib Nephrol. 181:22–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barratt J and Feehally J: IgA nephropathy. J Am Soc Nephrol. 16:2088–2097. 2005. View Article : Google Scholar : PubMed/NCBI | |
D'Amico G: Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol. 24:179–196. 2004. View Article : Google Scholar | |
Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L and Luo Z: Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer. 9:2666–2677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li GS, Zhang H, Lv JC, Shen Y and Wang HY: Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 71:448–453. 2007. View Article : Google Scholar : PubMed/NCBI | |
Novak J, Julian BA, Mestecky J and Renfrow MB: Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG and Wyatt RJ: Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 80:79–87. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lomax-Browne HJ, Visconti A, Pusey CD, Cook HT, Spector TD, Pickering MC and Falchi M: IgA1 glycosylation is heritable in healthy twins. J Am Soc Nephrol. 28:64–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, Ferlin A, Yin P, Nelson CP, Stanescu H, et al: Galactosylation of IgA1 is associated with common variation in C1GALT1. Am Soc Nephrol. 28:2158–2166. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13:e10066092017. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21:182020. View Article : Google Scholar : PubMed/NCBI | |
Xie LS, Qin W, Fan JM, Huang J, Xie XS and Li Z: The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy. Clin Invest Med. 33:E5–E13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vainchenker W, Vinci G, Testa U, Henri A, Tabilio A, Fache MP, Rochant H and Cartron JP: Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J Clin Invest. 75:541–546. 1985. View Article : Google Scholar : PubMed/NCBI | |
Berger EG: Tn-syndrome. Biochim Biophys Acta. 1455:255–268. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, et al: Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 7:618–631. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ju T and Cummings RD: Protein glycosylation: Chaperone mutation in Tn syndrome. Nature. 437:12522005. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al: Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68:1636–1646. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC and Schreiber H: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science. 314:304–308. 2006. View Article : Google Scholar : PubMed/NCBI | |
Crew VK, Singleton BK, Green C, Parsons SF, Daniels G and Anstee DJ: New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br J Haematol. 142:657–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jobe SM, Ding X, Choo H, Archer DR, Mi R, Ju T and Cummings RD: Platelet biogenesis and functions require correct protein O-glycosylation. Proc Natl Acad Sci USA. 109:16143–16148. 2012. View Article : Google Scholar : PubMed/NCBI | |
Springer GF: T and Tn, general carcinoma autoantigens. Science. 224:1198–1206. 1984. View Article : Google Scholar : PubMed/NCBI | |
Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL and Kim YS: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49:197–204. 1989.PubMed/NCBI | |
Tsuchiya A, Kanno M, Kawaguchi T, Endo Y, Zhang GJ, Ohtake T and Kimijima I I: Prognostic relevance of tn expression in breast cancer. Breast Cancer. 6:175–180. 1999. View Article : Google Scholar : PubMed/NCBI | |
Inoue M, Ton SM, Ogawa H and Tanizawa O: Expression of Tn and sialyl-Tn antigens in tumor tissues of the ovary. Am J Clin Pathol. 96:711–716. 1991. View Article : Google Scholar : PubMed/NCBI | |
Terasawa K, Furumoto H, Kamada M and Aono T: Expression of Tn and sialyl-Tn antigens in the neoplastic transformation of uterine cervical epithelial cells. Cancer Res. 56:2229–2232. 1996.PubMed/NCBI | |
Perez-Muñoz ME, Bergstrom K, Peng V, Schmaltz R, Jimenez-Cardona R, Marsteller N, McGee S, Clavel T, Ley R, Fu J, et al: Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes. 5:286–295. 2014. View Article : Google Scholar | |
Johansson ME, Sjövall H and Hansson GC: The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 10:352–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, et al: Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. 121:1657–1666. 2011. View Article : Google Scholar : PubMed/NCBI | |
Johansson ME, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H and Hansson GC: Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 63:281–291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Campbell BJ, Finnie IA, Hounsell EF and Rhodes JM: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest. 95:571–576. 1995. View Article : Google Scholar : PubMed/NCBI | |
Clamp JR, Fraser G and Read AE: Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci (Lond). 61:229–234. 1981. View Article : Google Scholar : PubMed/NCBI | |
Larsson JM, Karlsson H, Crespo JG, Johansson ME, Eklund L, Sjövall H and Hansson GC: Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis. 17:2299–2307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Theodoratou E, Campbell H, Ventham NT, Kolarich D, Pučić-Baković M, Zoldoš V, Fernandes D, Pemberton IK, Rudan I, Kennedy NA, et al: The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol. 11:588–600. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jacobs JP, Lin L, Goudarzi M, Ruegger P, McGovern DP, Fornace AJ Jr, Borneman J, Xia L and Braun J: Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. Gut Microbes. 8:1–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Aryal RP, Kudelka MR, Wang Y and Cummings RD: The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14:63–81. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT and Huang MC: C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 5:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL, Huang MC and Lai IR: Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget. 7:11251–11262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, et al: Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71:7270–7279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, et al: Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget. 6:5650–5665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z and Yu Z: The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol. 8:552020. View Article : Google Scholar : PubMed/NCBI | |
Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, Bang YJ and Kim WH: MET in gastric carcinomas: Comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 107:325–333. 2012. View Article : Google Scholar : PubMed/NCBI | |
Inokuchi M, Otsuki S, Fujimori Y, Sato Y, Nakagawa M and Kojima K: Clinical significance of MET in gastric cancer. World J Gastrointest Oncol. 7:317–327. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A and Kusunoki M: Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer. 130:2912–2921. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH, et al: A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 61:673–684. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG and Van Schaeybroeck S; MErCuRIC consortium, : Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat Rev Clin Oncol. 15:1502018. View Article : Google Scholar : PubMed/NCBI | |
Sierra JC, Asim M, Verriere TG, Piazuelo MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP, Peek RM Jr, et al: Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut. 67:1247–1260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xi HQ, Wu XS, Wei B and Chen L: Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaught D, Brantley-Sieders DM and Chen J: Eph receptors in breast cancer: Roles in tumor promotion and tumor suppression. Breast Cancer Res. 10:2172008. View Article : Google Scholar : PubMed/NCBI | |
Herath NI and Boyd AW: The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer. 126:2003-2011.PubMed/NCBI | |
Lisle JE, Mertens-Walker I, Rutkowski R, Herington AC and Stephenson SA: Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta. 1835:243–257. 2013.PubMed/NCBI | |
Pasquale EB: Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boyd AW, Bartlett PF and Lackmann M: Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov. 13:39–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Chen Z, Chen Z, Chen J, Wang R, Huang C and Yuan W: EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells. Oncotarget. 8:47998–48011. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang J, He Y, Mcleod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, et al: miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/ β-catenin/EMT signaling cascade in gastric cancer. BMC Cancer. 17:8862017. View Article : Google Scholar : PubMed/NCBI | |
Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL and Hsiao PW: Metastatic progression of prostate cancer is mediated by autonomous binding of Galectin-4-O-glycan to cancer cells. Cancer Res. 76:5756–5767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Guo W, Wang F, You Y, Wang J, Chen X, Wang J, Wang Y, Du Y, Chen X, et al: miR-1291 targets mucin 1 inhibiting cell proliferation and invasion to promote cell apoptosis in esophageal squamous cell carcinoma. Oncol Rep. 34:2665–2673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Chen D, Yang D and Liu XY: CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. J Exp Clin Cancer Res. 34:1492015. View Article : Google Scholar : PubMed/NCBI | |
Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, et al: Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 17:2955–2966. 2011. View Article : Google Scholar : PubMed/NCBI | |
Agata N, Ahmad R, Kawano T, Raina D, Kharbanda S and Kufe D: MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 68:6136–6144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kufe DW: MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liao X, Ye Q and Huang L: Clinic implication of MUC1 O-glycosylation and C1GALT1 in esophagus squamous cell carcinoma. Sci China Life Sci. 61:1389–1395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu L, Peng F and Shen L: Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res. 362:302–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Chang A, Huang M and Wu Y: Abstract 1400: C1GALT1 regulates malignant phenotypes of cholangiocarcinoma cells. Cancer Res. 792019.doi: 10.1158/1538-7445.AM2019-1400. PubMed/NCBI | |
Huang MC, Huang MJ and Wu YM: P0247: C1GAlT1 is overexpressed in cholangiocarcinoma and C1GAlT1 knockdown inhibits malignant behaviors of cholangiocarcinoma cells. J Hepatol. 62 (Suppl):S3992015. View Article : Google Scholar : PubMed/NCBI | |
Lin MC, Huang MJ, Liu CH, Yang TL and Huang MC: GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncol. 50:478–484. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leemans CR, Snijders P and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghazizadeh M, Ogawa H, Sasaki Y, Araki T and Aihara K: Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in human ovarian carcinomas: Relationship with histopathology and prognosis. Hum Pathol. 28:960–966. 1997. View Article : Google Scholar : PubMed/NCBI | |
Davidson B, Gotlieb WH, Ben-Baruch G, Kopolovic J, Goldberg I, Nesland JM, Berner A, Bjåmer A and Bryne M: Expression of carbohydrate antigens in advanced-stage ovarian carcinomas and their metastases-A clinicopathologic study. Gynecol Oncol. 77:35–43. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chou CH, Huang MJ, Liao YY, Chen CH and Huang MC: C1GALT1 seems to promote in vitro disease progression in ovarian cancer. Int J Gynecol Cancer. 27:863–871. 2017. View Article : Google Scholar : PubMed/NCBI | |
Leach SD: Mouse models of pancreatic cancer: The fur is finally flying. Cancer Cell. 5:7–11. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mazur PK and Siveke JT: Genetically engineered mouse models of pancreatic cancer: Unravelling tumour biology and progressing translational oncology. Gut. 61:1488–1500. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muniyan S, Haridas D, Chugh S, Rachagani S, Lakshmanan I, Gupta S, Seshacharyulu P, Smith LM, Ponnusamy MP and Batra SK: MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer. 7:110–124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fujita-Yamaguchi Y: Renewed interest in basic and applied research involving monoclonal antibodies against an oncofetal Tn-antigen. J Biochem. 154:103–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ju T and Cummings RD: Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer. 18:8272018. View Article : Google Scholar : PubMed/NCBI | |
Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Jiang Y, Liu J, Liu Z, Gao T, An G and Wen T: T-synthase deficiency enhances oncogenic features in human colorectal cancer cells via activation of epithelial-mesenchymal transition. Biomed Res Int. 2018:95323892018. View Article : Google Scholar : PubMed/NCBI | |
Scheid E, Major P, Bergeron A, Finn OJ, Salter RD, Eady R, Yassine-Diab B, Favre D, Peretz Y, Landry C, et al: Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol Res. 4:881–892. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sakai K, Yuasa N, Tsukamoto K, Takasaki-Matsumoto A, Yajima Y, Sato R, Kawakami H, Mizuno M, Takayanagi A, Shimizu N, et al: Isolation and characterization of antibodies against three consecutive Tn-antigen clusters from a phage library displaying human single-chain variable fragments. J Biochem. 147:809–817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piyush T, Rhodes JM and Yu LG: MUC1 O-glycosylation contributes to anoikis resistance in epithelial cancer cells. Cell Death Discov. 3:170442017. View Article : Google Scholar : PubMed/NCBI | |
Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K and Hakomori SI: Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci USA. 108:17690–17695. 2011. View Article : Google Scholar : PubMed/NCBI | |
An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J and Xia L: Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 204:1417–1429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kudo T, Iwai T, Kubota T, Iwasaki H, Takayma Y, Hiruma T, Inaba N, Zhang Y, Gotoh M, Togayachi A and Narimatsu H: Molecular cloning and characterization of a novel UDP-Gal:GalNAc(alpha) peptide beta 1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J Biol Chem. 277:47724–47731. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Aryal RP, Stowell CJ and Cummings RD: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol. 182:531–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B, Song L, van Die I, Chapman AB, Cummings RD, et al: Promoters of Human Cosmc And T-synthase genes are similar in structure, yet different in epigenetic regulation. J Biol Chem. 290:19018–19033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M and Cummings RD: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA. 107:9228–9233. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mi R, Song L, Wang Y, Ding X, Zeng J, Lehoux S, Aryal RP, Wang J, Crew VK, van Die I, et al: Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen. J Biol Chem. 287:41523–41533. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cartron JP and Nurden AT: Galactosyltransferase and membrane glycoprotein abnormality in human platelets from Tn-syndrome donors. Nature. 282:621–623. 1979. View Article : Google Scholar : PubMed/NCBI | |
Cartron JP, Cartron J, Andreu G, Salmon C and Bird GW: Selective deficiency of 3-beta-d-galactosyltransferase (T-transferase) in Tn-polyagglutinable erythrocytes. Lancet. 1:856–857. 1978. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Otto VI and Cummings RD: The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 50:1770–1791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hiki Y: O-linked oligosaccharides of the IgA1 hinge region: Roles of its aberrant structure in the occurrence and/or progression of IgA nephropathy. Clin Exp Nephrol. 13:415–423. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Tang Y, Fu H, Xu J, Hu Z, Zhang Y and Cai Q: Integrin β1 promotes gemcitabine resistance in pancreatic cancer through Cdc42 activation of PI3K p110β signaling. Biochem Biophys Res Commun. 505:215–221. 2018. View Article : Google Scholar : PubMed/NCBI | |
Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T and Niitsu Y: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 22:353–360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ and Bissell MJ: Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66:1526–1535. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ren Z, Wang Y, Dang YZ, Meng BX, Wang GD, Zhang J, Wu J and Wen N: ADAM17 promotes cell migration and invasion through the integrin β1 pathway in hepatocellular carcinoma. Exp Cell Res. 370:373–382. 2018. View Article : Google Scholar : PubMed/NCBI | |
Winkler J, Roessler S, Sticht C, DiGuilio AL, Drucker E, Holzer K, Eiteneuer E, Herpel E, Breuhahn K, Gretz N, et al: Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget. 7:22883–22892. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fransvea E, Mazzocca A, Antonaci S and Giannelli G: Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 49:839–850. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trusolino L, Bertotti A and Comoglio PM: A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell. 107:643–654. 2001. View Article : Google Scholar : PubMed/NCBI | |
McCall-Culbreath KD, Li Z and Zutter MM: Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood. 111:3562–3570. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, Taglienti M, Bates CM, Chapman HA, Miner JH and Kreidberg JA: Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development. 136:843–853. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li Y, Dang YZ, Gao HX, Jiang JL and Chen ZN: HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: A potential role for integrin β1 signaling. Mol Cancer Ther. 14:553–563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Eke I, Dickreuter E and Cordes N: Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by β1 integrin inhibition. Radiother Oncol. 104:235–242. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsubamoto H, Sonoda T, Yamasaki M and Inoue K: Impact of combination chemotherapy with itraconazole on survival of patients with refractory ovarian cancer. Anticancer Res. 34:2481–2487. 2014.PubMed/NCBI | |
Rudin CM, Brahmer JR, Juergens RA, Hann CL, Ettinger DS, Sebree R, Smith R, Aftab BT, Huang P and Liu JO: Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J Thorac Oncol. 8:619–623. 2013. View Article : Google Scholar : PubMed/NCBI | |
Antonarakis ES, Heath EI, Smith DC, Rathkopf D, Blackford AL, Danila DC, King S, Frost A, Ajiboye AS, Zhao M, et al: Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist. 18:163–173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Tan PF, Zhang Q, Ang KK, Weber RS, Rosenthal DI, Soulieres D, Kim H, Silverman C, Raben A, Galloway TJ, et al: Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: Long-term report of efficacy and toxicity. J Clin Oncol. 32:3858–3866. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aryal RP, Ju T and Cummings RD: Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J Biol Chem. 289:11630–11641. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schachter H: The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J. 17:465–483. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hakomori S: Glycosylation defining cancer malignancy: New wine in an old bottle. Proc Natl Acad Sci USA. 99:10231–10233. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue A, Zou S, Cheng Z and Wu S: Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer. Int J Mol Med. 30:1267–1274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kariya Y, Kanno M, Matsumoto-Morita K, Konno M, Yamaguchi Y and Hashimoto Y: Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J. 463:93–102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A and Bachvarov D: Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: Possible implications in abnormal mucin O-glycosylation. Oncotarget. 5:544–560. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Pan S, Xiao Y, Liu Q, Xu J and Jia L: LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 37:3162018. View Article : Google Scholar : PubMed/NCBI |