1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cersosimo RJ: Lung cancer: A review. Am J
Health Syst Pharm. 59:611–642. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Inamura K: Lung cancer: Understanding its
molecular pathology and the 2015 WHO classification. Front Oncol.
7:1932017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kalari KR, Rossell D, Necela BM, Asmann
YW, Nair A, Baheti S, Kachergus JM, Younkin CS, Baker T, Carr JM,
et al: Deep sequence analysis of non-small cell lung cancer:
Integrated analysis of gene expression, alternative splicing, and
single nucleotide variations in lung adenocarcinomas with and
without oncogenic KRAS mutations. Front Oncol. 2:122012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Sosman JA,
Atkins MB, Leming PD, et al: Five-year survival and correlates
among patients with advanced melanoma, renal cell carcinoma, or
non-small cell lung cancer treated with nivolumab. JAMA Oncol.
5:1411–1420. 2019.(Online ahead of print). View Article : Google Scholar : PubMed/NCBI
|
8
|
Shah MY, Ferrajoli A, Sood AK,
Lopez-Berestein G and Calin GA: Microrna therapeutics in cancer-an
emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Buchan JR and Parker R: Molecular biology.
The two faces of miRNA. Science. 318:1877–1878. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goh JN, Loo SY, Datta A, Siveen KS, Yap
WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, et al: microRNAs in
breast cancer: Regulatory roles governing the hallmarks of cancer.
Biol Rev Camb Philos Soc. 91:409–428. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Farazi TA, Spitzer JI, Morozov P and
Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Henry JC, Azevedo-Pouly ACP and Schmittgen
TD: MicroRNA replacement therapy for cancer. Pharm Res.
28:3030–3042. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu
Y, Chen Y, Xu L, Zen K, Zhang C and Shen H: Serum microRNA
signatures identified in a genome-wide serum microRNA expression
profiling predict survival of non-small-cell lung cancer. J Clin
Oncol. 28:1721–1726. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li J, Yu T, Cao J, Liu L, Liu Y, Kong HW,
Zhu MX, Lin HC, Chu DD, Yao M and Yan MX: MicroRNA-148a suppresses
invasion and metastasis of human non-small-cell lung cancer. Cell
Physiol Biochem. 37:1847–1856. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
He Q, Fang Y, Lu F, Pan J, Wang L, Gong W,
Fei F, Cui J, Zhong J, Hu R, et al: Analysis of differential
expression profile of miRNA in peripheral blood of patients with
lung cancer. J Clin Lab Anal. 33:e230032019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cancer Genome Atlas Research Network, ;
Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA,
Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome
atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C,
Xi YY, Wang L, Wang X, He QQ, Sun CC and Li DJ: MicroRNAs: A novel
potential biomarker for diagnosis and therapy in patients with
non-small cell lung cancer. Cell Prolif. 50:e123942017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Petrek H and Yu AM: MicroRNAs in non-small
cell lung cancer: Gene regulation, impact on cancer cellular
processes, and therapeutic potential. Pharmacol Res Perspect.
7:e005282019. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Bica-Pop C, Cojocneanu-Petric R, Magdo L,
Raduly L, Gulei D and Berindan-Neagoe I: Overview upon miR-21 in
lung cancer: Focus on NSCLC. Cell Mol Life Sci. 75:3539–3551. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wei W, Dong Z, Gao H, Zhang YY, Shao LH,
Jin LL, Lv YH, Zhao G, Shen YN and Jin SZ: MicroRNA-9 enhanced
radiosensitivity and its mechanism of DNA methylation in non-small
cell lung cancer. Gene. 710:178–185. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X
and Zhu W: Therapeutic delivery of microRNA-143 by cationic
lipoplexes for non-small cell lung cancer treatment in vivo. J
Cancer Res Clin Oncol. 145:2951–2967. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu X, Liu X, Liu Y, Chang W, Song Y and
Zhu S: Uncovering the potential differentially expressed miRNAs and
mRNAs in ischemic stroke based on integrated analysis in the gene
expression omnibus database. Eur Neurol. 9:404–414. 2020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang B, Jing C, Wang J, Guo X, Chen Y, Xu
R, Peng L, Liu J and Li L: Identification of microRNAs associated
with lymphangiogenesis in human gastric cancer. Clin Transl Oncol.
16:374–379. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li H, Fan J, Yin Z, Wang F, Chen C and
Wang DW: Identification of cardiac-related circulating microRNA
profile in human chronic heart failure. Oncotarget. 7:33–45. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mishra J, Kumar A, Sinha A, Das S and
Srivastava A: Ingenuity in pattern recognition: A novel
bioinformatics approach towards lung cancer identification. Int J
Bioinform Res Appl. 6:531–541. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Blomme B, Heindryckx F, Stassen JM, Geerts
A, Colle I and Van Vlierberghe H: Serum protein N-glycan
alterations of diethylnitrosamine-induced hepatocellular carcinoma
mice and their evolution after inhibition of the placental growth
factor. Mol Cell Biochem. 372:199–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Goldstein B, Trivedi M and Speth RC:
Alterations in gene expression of components of the
renin-angiotensin system and its related enzymes in lung cancer.
Lung Cancer Int. 2017:69149762017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Parsana P, Amend SR, Hernandez J, Pienta
KJ and Battle A: Identifying global expression patterns and key
regulators in epithelial to mesenchymal transition through
multi-study integration. BMC Cancer. 17:4472017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen L, Chen DT, Kurtyka C, Rawal B, Fulp
WJ, Haura EB and Cress WD: Tripartite motif containing 28 (Trim28)
can regulate cell proliferation by bridging HDAC1/E2F interactions.
J Biol Chem. 287:40106–40118. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zaman MM, Nomura T, Takagi T, Okamura T,
Jin W, Shinagawa T, Tanaka Y and Ishii S:
Ubiquitination-deubiquitination by the TRIM27-USP7 complex
regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell
Biol. 33:4971–4984. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Versteeg GA, Benke S, Garcia-Sastre A and
Rajsbaum R: InTRIMsic immunity: Positive and negative regulation of
immune signaling by tripartite motif proteins. Cytokine Growth
Factor Rev. 25:563–576. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhu L, Qin C, Li T, Ma X, Qiu Y, Lin Y, Ma
D, Qin Z, Sun C, Shen X, et al: The E3 ubiquitin ligase TRIM7
suppressed hepatocellular carcinoma progression by directly
targeting Src protein. Cell Death Differ. 27:1819–1831. 2020.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Jin J, Lu Z, Wang X, Liu Y, Han T, Wang Y,
Wang T, Gan M, Xie C, Wang J and Yu B: E3 ubiquitin ligase TRIM7
negatively regulates NF-kappa B signaling pathway by degrading p65
in lung cancer. Cell Signal. 69:1095432020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hayden MS and Ghosh S: Shared principles
in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Park MH and Hong JT: Roles of NF-κB in
cancer and inflammatory diseases and their therapeutic approaches.
Cells. 5:152016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bassères DS, Ebbs A, Levantini E and
Baldwin AS: Requirement of the NF-kappaB subunit p65/RelA for
K-Ras-induced lung tumorigenesis. Cancer Res. 70:3537–3546. 2010.
View Article : Google Scholar
|