1
|
Borran S, Ahmadi G, Rezaei S, Anari MM,
Modabberi M, Azarash Z, Razaviyan J, Derakhshan M, Akhbari M and
Mirzaei H: Circular RNAs: New players in thyroid cancer. Pathol Res
Pract. 216:1532172020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rossi ED, Faquin WC and Pantanowitz L:
Cytologic features of aggressive variants of follicular-derived
thyroid carcinoma. Cancer Cytopathol. 127:432–446. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tang KT and Lee CH: BRAF mutation in
papillary thyroid carcinoma: Pathogenic role and clinical
implications. J Chin Med Assoc. 73:113–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ito Y, Jikuzono T, Higashiyama T, Asahi S,
Tomoda C, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K and
Miyauchi A: Clinical significance of lymph node metastasis of
thyroid papillary carcinoma located in one lobe. World J Surg.
30:1821–1828. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao J, Xu C, Yao J, Yu C, Liao L and Dong
J: Statins and thyroid carcinoma: A meta-analysis. Cell Physiol
Biochem. 47:1422–1431. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stewart GL, Enfield KSS, Sage AP, Martinez
VD, Minatel BC, Pewarchuk ME, Marshall EA and Lam WL: Aberrant
expression of pseudogene-derived lncRNAs as an alternative
mechanism of cancer gene regulation in lung adenocarcinoma. Front
Genet. 10:1382019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shih JH, Chen HY, Lin SC, Yeh YC, Shen R,
Lang YD, Wu DC, Chen CY, Chen RH, Chou TY and Jou YS: Integrative
analyses of noncoding RNAs reveal the potential mechanisms
augmenting tumor malignancy in lung adenocarcinoma. Nucleic Acids
Res. 48:1175–1191. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Poliseno L: Pseudogenes: Newly discovered
players in human cancer. Sci Signal. 5:re52012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiao-Jie L, Ai-Mei G, Li-Juan J and Jiang
X: Pseudogene in cancer: Real functions and promising signature. J
Med Genet. 52:17–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin JD, Fu SS, Chen JY, Lee CH, Chau WK,
Cheng CW, Wang YH, Lin YF, Fang WF and Tang KT: Clinical
manifestations and gene expression in patients with conventional
papillary thyroid carcinoma carrying the BRAF(V600E) mutation and
BRAF pseudogene. Thyroid. 26:691–704. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang JL, Cao SW, Ou QS, Yang B, Zheng SH,
Tang J, Chen J, Hu YW, Zheng L and Wang Q: The long non-coding RNA
PTTG3P promotes cell growth and metastasis via up-regulating PTTG1
and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol
Cancer. 17:932018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kong Y, Zhang L, Huang Y, He T, Zhang L,
Zhao X, Zhou X, Zhou D, Yan Y, Zhou J, et al: Pseudogene PDIA3P1
promotes cell proliferation, migration and invasion, and suppresses
apoptosis in hepatocellular carcinoma by regulating the p53
pathway. Cancer Lett. 407:76–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun M, Nie FQ, Zang C, Wang Y, Hou J, Wei
C, Li W, He X and Lu KH: The pseudogene DUXAP8 promotes
non-small-cell lung cancer cell proliferation and invasion by
epigenetically silencing EGR1 and RHOB. Mol Ther. 25:739–751. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liao K, Qian Z, Zhang S, Chen B, Li Z,
Huang R, Cheng L, Wang T, Yang R, Lan J, et al: The LGMN pseudogene
promotes tumor progression by acting as a miR-495-3p sponge in
glioblastoma. Cancer Lett. 490:111–123. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim YW, Kim EY, Jeon D, Liu JL, Kim HS,
Choi JW and Ahn WS: Differential microRNA expression signatures and
cell type-specific association with Taxol resistance in ovarian
cancer cells. Drug Des Devel Ther. 8:293–314. 2014.PubMed/NCBI
|
16
|
Duan W, Kong X, Li J, Li P, Zhao Y, Liu T,
Binang HB, Wang Y, Du L and Wang C: LncRNA AC010789.1 promotes
colorectal cancer progression by targeting microRNA-432-3p/ZEB1
axis and the Wnt/β-catenin signaling pathway. Front Cell Dev Biol.
8:5653552020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kafshdooz L, Pourfathi H, Akbarzadeh A,
Kafshdooz T, Razban Z, Sheervalilou R, Ebrahimi Sadr N, Khalilov R,
Saghfi S, Kavetskyy T, et al: The role of microRNAs and
nanoparticles in ovarian cancer: A review. Artif Cells Nanomed
Biotechnol. 46:241–247. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Han D, Li J, Wang H, Su X, Hou J, Gu Y,
Qian C, Lin Y, Liu X, Huang M, et al: Circular RNA circMTO1 acts as
the sponge of microRNA-9 to suppress hepatocellular carcinoma
progression. Hepatology. 66:1151–1164. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ye M, Dong S, Hou H, Zhang T and Shen M:
Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer
progression through regulation of the miR-204/IGF2BP2/m6A-MYC
signaling. Mol Ther Nucleic Acids. 23:1–12. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shu T, Yang L, Sun L, Lu J and Zhan X:
CircHIPK3 promotes thyroid cancer tumorigenesis and invasion
through the Mirna-338-3p/RAB23 axis. Med Princ Pract. Oct
26–2020.(Epub ahead of Print). View Article : Google Scholar
|
21
|
Qian J, Garg A, Li F, Shen Q and Xiao K:
LncRNA LUNAR1 accelerates colorectal cancer progression by
targeting the miR4953p/MYCBP axis. Int J Oncol. 57:1157–1168.
2020.PubMed/NCBI
|
22
|
Levy JMM, Towers CG and Thorburn A:
Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Pagotto A, Pilotto G, Mazzoldi EL,
Nicoletto MO, Frezzini S, Pastò A and Amadori A: Autophagy
inhibition reduces chemoresistance and tumorigenic potential of
human ovarian cancer stem cells. Cell Death Dis. 8:e29432017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chude CI and Amaravadi RK: Targeting
autophagy in cancer: Update on clinical trials and novel
inhibitors. Int J Mol Sci. 18:12792017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Amaravadi R, Kimmelman AC and White E:
Recent insights into the function of autophagy in cancer. Genes
Dev. 30:1913–1930. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wei W, Hardin H and Luo QY: Targeting
autophagy in thyroid cancers. Endocr Relat Cancer. 26:R181–R194.
2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yan L, Yue C, Xu Y, Jiang X, Zhang L and
Wu J: Identification of potential diagnostic and prognostic
pseudogenes in hepatocellular carcinoma based on
pseudogene-miRNA-mRNA competitive network. Med Sci Monit.
26:e9218952020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hou Z, Wang Y, Xia N, Lv T, Yuan X and
Song Y: Pseudogene KRT17P3 drives cisplatin resistance of human
NSCLC cells by modulating miR-497-5p/mTOR. Cancer Sci. 112:275–286.
2021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li W, Yang Y, Hou X, Zhuang H, Wu Z, Li Z,
Guo R, Chen H, Lin C, Zhong W, et al: MicroRNA-495 regulates
starvation-induced autophagy by targeting ATG3. FEBS Lett.
590:726–738. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Somuncu E, Karatas A, Ferahman S, Saygili
N, Yilmaz E, Ozturk O and Kapan M: The investigation of foxe1
variations in papillary thyroid carcinoma. Int J Clin Exp Pathol.
8:13458–13464. 2015.PubMed/NCBI
|
32
|
Li J, Jiang L, Liu Z, Li Y, Xu Y and Liu
H: Oncogenic pseudogene DUXAP10 knockdown suppresses proliferation
and invasion and induces apoptosis of papillary thyroid carcinoma
cells by inhibition of Akt/mTOR pathway. Clin Exp Pharmacol
Physiol. 47:1473–1483. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Eun JW, Kim HS, Shen Q, Yang HD, Kim SY,
Yoon JH, Park WS, Lee JY and Nam SW: MicroRNA-495-3p functions as a
tumor suppressor by regulating multiple epigenetic modifiers in
gastric carcinogenesis. J Pathol. 244:107–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen X, Xu Y, Liao X, Liao R, Zhang L, Niu
K, Li T, Li D, Chen Z, Duan Y and Sun J: Plasma miRNAs in
predicting radiosensitivity in non-small cell lung cancer. Tumour
Biol. 37:11927–11936. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Halvorsen AR, Sandhu V, Sprauten M, Flote
VG, Kure EH, Brustugun OT and Helland Å: Circulating microRNAs
associated with prolonged overall survival in lung cancer patients
treated with nivolumab. Acta Oncol. 57:1225–1231. 2018. View Article : Google Scholar : PubMed/NCBI
|