1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reid BM, Permuth JB and Sellers TA:
Epidemiology of ovarian cancer: A review. Cancer Biol Med. 14:9–32.
2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Colombo N, Parma G, Zanagnolo V and
Insinga A: Management of ovarian stromal cell tumors. J Clin Oncol.
25:2944–2951. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Damia G and Broggini M: Platinum
resistance in ovarian cancer: Role of DNA repair. Cancers (Basel).
11:1192019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tomao F, D'Incalci M, Biagioli E,
Peccatori FA and Colombo N: Restoring platinum sensitivity in
recurrent ovarian cancer by extending the platinum-free interval:
Myth or reality? Cancer. 123:3450–3459. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lheureux S, Gourley C, Vergote I and Oza
AM: Epithelial ovarian cancer. Lancet. 393:1240–1253. 2019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Raja FA, Counsell N, Colombo N, Pfisterer
J, du Bois A, Parmar MK, Vergote IB, Gonzalez-Martin A, Alberts DS,
Plante M, et al: Platinum versus platinum-combination chemotherapy
in platinum-sensitive recurrent ovarian cancer: A meta-analysis
using individual patient data. Ann Oncol. 24:3028–3034. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Parmar MK, Ledermann JA, Colombo N, du
Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W,
Torri V, et al: Paclitaxel plus platinum-based chemotherapy versus
conventional platinum-based chemotherapy in women with relapsed
ovarian cancer: The ICON4/AGO-OVAR-2.2 trial. Lancet.
361:2099–2106. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Borella F, Ghisoni E, Giannone G, Cosma S,
Benedetto C, Valabrega G and Katsaros D: Immune checkpoint
inhibitors in epithelial ovarian cancer: An overview on efficacy
and future perspectives. Diagnostics (Basel). 10:1462020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kaushik V, Yakisich JS, Kumar A, Azad N
and Iyer AKV: Ionophores: Potential use as anticancer drugs and
chemosensitizers. Cancers (Basel). 10:3602018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Harned RL, Hidy PH, Corum CJ and Jones KL:
Nigericin a new crystalline antibiotic from an unidentified
Streptomyces. Antibiot Chemother (Northfield). 1:594–596.
1951.PubMed/NCBI
|
12
|
Liu F, Li W, Hua S, Han Y, Xu Z, Wan D,
Wang Y, Chen W, Kuang Y, Shi J and Zhi Q: Nigericin exerts
anticancer effects on human colorectal cancer cells by inhibiting
wnt/β-catenin signaling pathway. Mol Cancer Ther. 17:952–965. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yakisich JS, Azad N, Kaushik V, O'Doherty
GA and Iyer AK: Nigericin decreases the viability of
multidrug-resistant cancer cells and lung tumorspheres and
potentiates the effects of cardiac glycosides. Tumour Biol.
39:10104283176943102017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Boesch M, Zeimet AG, Rumpold H, Gastl G,
Sopper S and Wolf D: Drug transporter-mediated protection of cancer
stem cells from ionophore antibiotics. Stem Cells Transl Med.
4:1028–1032. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Deng CC, Liang Y, Wu MS, Feng FT, Hu WR,
Chen LZ, Feng QS, Bei JX and Zeng YX: Nigericin selectively targets
cancer stem cells in nasopharyngeal carcinoma. Int J Biochem Cell
Biol. 45:1997–2006. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hrgovic I, Glavic Z, Kovacic Z, Mulic S,
Zunic L and Hrgovic Z: Repeated administration of inhibitors for
ion pumps reduce markedly tumor growth in vivo. Med Arch. 68:76–78.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang W, Zhao Y, Yao S, Cui X, Pan W, Huang
W, Gao J, Dong T and Zhang S: Nigericin inhibits epithelial ovarian
cancer metastasis by suppressing the cell cycle and
epithelial-mesenchymal transition. Biochemistry (Mosc). 82:933–941.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Karam A and Dorigo O: MMPs in ovarian
cancer as therapeutic targets. Anticancer Agents Med Chem.
12:764–772. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nieszporek A, Skrzypek K, Adamek G and
Majka M: Molecular mechanisms of epithelial to mesenchymal
transition in tumor metastasis. Acta Biochim Pol. 66:509–520.
2019.PubMed/NCBI
|
20
|
Kulshrestha A, Katara GK, Ibrahim SA,
Riehl V, Sahoo M, Dolan J, Meinke KW, Pins MR and Beaman KD:
Targeting V-ATpase isoform restores cisplatin activity in resistant
ovarian cancer: Inhibition of autophagy, endosome function, and
ERK/MEK pathway. J Oncol. 2019:23438762019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Galluzzi L, Vitale I, Michels J, Brenner
C, Szabadkai G, Harel-Bellan A, Castedo M and Kroemer G: Systems
biology of cisplatin resistance: Past, present and future. Cell
Death Dis. 5:e12572014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pfisterer J, Plante M, Vergote I, du Bois
A, Hirte H, Lacave AJ, Wagner U, Stahle A, Stuart G, Kimmig R, et
al: Gemcitabine plus carboplatin compared with carboplatin in
patients with platinum-sensitive recurrent ovarian cancer: An
intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG.
J Clin Oncol. 24:4699–4707. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gonzalez-Martin AJ, Calvo E, Bover I,
Rubio MJ, Arcusa A, Casado A, Ojeda B, Balana C, Martinez E,
Herrero A, et al: Randomized phase II trial of carboplatin versus
paclitaxel and carboplatin in platinum-sensitive recurrent advanced
ovarian carcinoma: A GEICO (Grupo Espanol de Investigacion en
Cancer de Ovario) study. Ann Oncol. 16:749–755. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Alberts DS, Liu PY, Wilczynski SP, Clouser
MC, Lopez AM, Michelin DP, Lanzotti VJ and Markman M; Southwest
Oncology G, : Randomized trial of pegylated liposomal doxorubicin
(PLD) plus carboplatin versus carboplatin in platinum-sensitive
(PS) patients with recurrent epithelial ovarian or peritoneal
carcinoma after failure of initial platinum-based chemotherapy
(Southwest Oncology Group Protocol S0200). Gynecol Oncol.
108:90–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bolis G, Scarfone G, Giardina G, Villa A,
Mangili G, Melpignano M, Presti M, Tateo S, Franchi M, Parazzini F,
et al: Carboplatin alone vs carboplatin plus epidoxorubicin as
second-line therapy for cisplatin-or carboplatin-sensitive ovarian
cancer. Gynecol Oncol. 81:3–9. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Savagner P, Yamada KM and Thiery JP: The
zinc-finger protein slug causes desmosome dissociation, an initial
and necessary step for growth factor-induced epithelial-mesenchymal
transition. J Cell Biol. 137:1403–1419. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
De Craene B and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Phillips S and Kuperwasser C: SLUG:
Critical regulator of epithelial cell identity in breast
development and cancer. Cell Adh Migr. 8:578–587. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ye X, Tam WL, Shibue T, Kaygusuz Y,
Reinhardt F, Ng Eaton E and Weinberg RA: Distinct EMT programs
control normal mammary stem cells and tumour-initiating cells.
Nature. 525:256–260. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fang JH, Zhou HC, Zhang C, Shang LR, Zhang
L, Xu J, Zheng L, Yuan Y, Guo RP, Jia WH, et al: A novel vascular
pattern promotes metastasis of hepatocellular carcinoma in an
epithelial-mesenchymal transition-independent manner. Hepatology.
62:452–465. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu X, Sun H, Qi J, Wang L, He S, Liu J,
Feng C, Chen C, Li W, Guo Y, et al: Sequential introduction of
reprogramming factors reveals a time-sensitive requirement for
individual factors and a sequential EMT-MET mechanism for optimal
reprogramming. Nat Cell Biol. 15:829–838. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nieto MA, Huang RY, Jackson RA and Thiery
JP: Emt: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ
and Carson DA: Salinomycin inhibits Wnt signaling and selectively
induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl
Acad Sci USA. 108:13253–13257. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Geiss-Friedlander R and Melchior F:
Concepts in sumoylation: A decade on. Nat Rev Mol Cell Biol.
8:947–956. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kho C, Lee A, Jeong D, Oh JG, Chaanine AH,
Kizana E, Park WJ and Hajjar RJ: SUMO1-dependent modulation of
SERCA2a in heart failure. Nature. 477:601–605. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chand V, John R, Jaiswal N, Johar SS and
Nag A: High-risk HPV16E6 stimulates hADA3 degradation by enhancing
its SUMOylation. Carcinogenesis. 35:1830–1839. 2014. View Article : Google Scholar : PubMed/NCBI
|