SPP1 and FN1 are significant gene biomarkers of tongue squamous cell carcinoma
- Authors:
- Xiao-Liang Xu
- Hui Liu
- Ying Zhang
- Su-Xin Zhang
- Zhong Chen
- Yang Bao
- Tian-Ke Li
-
Affiliations: Department of Stomatology, The Second Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China, Department of Stomatology, North China University of Science And Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China, Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China, Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China - Published online on: August 6, 2021 https://doi.org/10.3892/ol.2021.12974
- Article Number: 713
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Paderno A, Morello R and Piazza C: Tongue carcinoma in young adults: A review of the literature. Acta Otorhinolaryngol Ital. 38:175–180. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mannelli G, Arcuri F, Agostini T, Innocenti M, Raffaini M and Spinelli G: Classification of tongue cancer resection and treatment algorithm. J Surg Oncol. 117:1092–1099. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Liang J, Wang Q, Li Z, Du Y and Xu X: MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Prolif. 49:628–635. 2016. View Article : Google Scholar : PubMed/NCBI | |
Semsettin B, Sinan E and Nigar V: Comparison of the effects of topical cyclosporine a 0.05%, cyclosporine a 2%, epinastine hydrochloride 0.05%, and prednisolone acetate 1% on allergic inflammation in an experimental allergic conjunctivitis model. Cornea. 32:1465–1469. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bello IO, Soini Y and Salo T: Prognostic evaluation of oral tongue cancer: Means, markers and perspectives (II). Oral Oncol. 46:636–643. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi N, Chan M, Huo YR, Sritharan N and Chin RY: Survival outcome of tonsillar squamous cell carcinoma (TSCC) in the context of human papillomavirus (HPV): A systematic review and meta-analysis. Surgeon. 17:6–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ramqvist T, Grün N and Dalianis T: Human papillomavirus and tonsillar and base of tongue cancer. Viruses. 7:1332–1343. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lozev I, Ruseva S, Pidakev I, Cardoso JC, Wollina U, Lotti T, Maximov GK, Terziev I and Tchernev G: Mucoepidermoid carcinoma (MEC) of parotid gland with massive cutaneous involvement: Bilateral pedicle advancement flap (U-Plasty) as adequate surgical approach. Open Access Maced J Med Sci. 6:134–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Wang Y, Li R, Liu A, Zhang X, Zuo C and Xu X: Surgical treatment of early tongue squamous cell carcinoma and patient survival. Oncol Lett. 17:5681–5685. 2019.PubMed/NCBI | |
Ng JH, Iyer NG, Tan MH and Edgren G: Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wade MH and Plotnick H: Xeroderma pigmentosum and squamous cell carcinoma of the tongue. Identification of two black patients as members of complementation group C. J Am Acad Dermatol. 12:515–521. 1985. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Zhang L, Liu H, Zhao L, Li Y, Shen JX, Liu Q, Liu MZ and Xi M: Clinicopathologic characteristics and prognosis of tongue squamous cell carcinoma in patients with and without a history of radiation for nasopharyngeal carcinoma: A matched case-control study. Cancer Res Treat. 49:695–705. 2017. View Article : Google Scholar : PubMed/NCBI | |
Velly AM, Franco EL, Schlecht N, Pintos J, Kowalski LP, Oliveira BV and Curado MP: Relationship between dental factors and risk of upper aerodigestive tract cancer. Oral Oncol. 34:284–291. 1998. View Article : Google Scholar : PubMed/NCBI | |
Troiano G, Rubini C, Togni L, Caponio VC, Zhurakivska K, Santarelli A, Cirillo N, Lo Muzio L and Mascitti M: The immune phenotype of tongue squamous cell carcinoma predicts early relapse and poor prognosis. Cancer Med. 9:8333–8344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussein AA, Forouzanfar T, Bloemena E, de Visscher J, Brakenhoff RH, Leemans CR and Helder MN: A review of the most promising biomarkers for early diagnosis and prognosis prediction of tongue squamous cell carcinoma. Br J Cancer. 119:724–736. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J and Yano H: SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol. 51:102–110. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng G, Zhang Z, Liu H, Xiong Y, Luo L, Jia X, Peng C, Zhang Q, Li N, Gu Y, et al: HSP27-mediated extracellular and intracellular signaling pathways synergistically confer chemoresistance in squamous cell carcinoma of tongue. Clin Cancer Res. 24:1163–1175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen H and Dai J: miR-409-3p suppresses the proliferation, invasion and migration of tongue squamous cell carcinoma via targeting RDX. Oncol Lett. 16:543–551. 2018.PubMed/NCBI | |
Solomon B, Young RJ and Rischin D: Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 52:228–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Lupo G, La Rosa G, Crimi S, Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S: Identification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancer. Cancers (Basel). 11:6102019. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Wu G, Chen Y, Wang H, Gao Y and Wang A: Bioinformatic screening and experimental analysis identify SFRP1 as a prognostic biomarker for tongue squamous cell carcinomas. Arch Oral Biol. 110:1045872020. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhou X, Wang H, Zhou B, Dong S, Ding Q, Peng M, Sheng X, Yao J, Huang R, et al: Integrative analysis of gene expression profiles reveals distinct molecular characteristics in oral tongue squamous cell carcinoma. Oncol Lett. 17:2377–2387. 2019.PubMed/NCBI | |
Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, Okura M, Fukuda Y and Toyosawa S: Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 133:568–578. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Chen ZG, Liu SH, Dong ZQ, Dalin M, Bao SS, Hu YW and Wei FC: Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating β-catenin. Acta Pharmacol Sin. 34:176–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Liu X, Chen Z, Huang H, Jin Y, Kolokythas A, Wang A, Dai Y, Wong DT and Zhou X: Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol Carcinog. 52:229–236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M and Falzone L: The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep. 42:911–922. 2019.PubMed/NCBI | |
Falzone L, Romano GL, Salemi R, Bucolo C, Tomasello B, Lupo G, Anfuso CD, Spandidos DA, Libra M and Candido S: Prognostic significance of deregulated microRNAs in uveal melanomas. Mol Med Rep. 19:2599–2610. 2019.PubMed/NCBI | |
Falzone L, Scola L, Zanghì A, Biondi A, Di Cataldo A, Libra M and Candido S: Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development. Aging (Albany NY). 10:1000–1014. 2018. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Candido S, Salemi R, Basile MS, Scalisi A, McCubrey JA, Torino F, Signorelli SS, Montella M and Libra M: Computational identification of microRNAs associated to both epithelial to mesenchymal transition and NGAL/MMP-9 pathways in bladder cancer. Oncotarget. 7:72758–72766. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hafsi S, Candido S, Maestro R, Falzone L, Soua Z, Bonavida B, Spandidos DA and Libra M: Correlation between the overexpression of Yin Yang 1 and the expression levels of miRNAs in Burkitt's lymphoma: A computational study. Oncol Lett. 11:1021–1025. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li R, Faden DL, Fakhry C, Langelier C, Jiao Y, Wang Y, Wilkerson MD, Pedamallu CS, Old M, Lang J, et al: Clinical, genomic, and metagenomic characterization of oral tongue squamous cell carcinoma in patients who do not smoke. Head Neck. 37:1642–1649. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li B, Li CH, Guo H, Chen J and Wang SX: Analysis of 27 cases of defect restoration using infrahyoid myocutaneous flap after intraoral cancer surgery. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 43:826–829. 2008.(In Chinese). PubMed/NCBI | |
Liu X, Qiao B, Zhao T, Hu F, Lam AK and Tao Q: Sox2 promotes tumor aggressiveness and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Int J Mol Med. 42:1418–1426. 2018.PubMed/NCBI | |
Tang Q, Cheng B, Xie M, Chen Y, Zhao J, Zhou X and Chen L: Circadian clock gene bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res. 77:532–544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Araki K, Tanaka S, Miyagawa Y, Suzuki H, Kamide D, Tomifuji M, Uno K, Kimura E, Yamashita T, et al: Sentinel lymph node-targeted therapy by oncolytic sendai virus suppresses micrometastasis of head and neck squamous cell carcinoma in an orthotopic nude mouse model. Mol Cancer Ther. 18:1430–1438. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Feng J, Qiu L, Gao Z, Li P, Pang L and Zhang Z: SDF-1-loaded PLGA nanoparticles for the targeted photoacoustic imaging and photothermal therapy of metastatic lymph nodes in tongue squamous cell carcinoma. Int J Pharm. 554:93–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, et al: Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 9:1477–1536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Meng LB, Di CY, Huo YH, Yao BC, Zhang TJ and Hua Z: Exploration of the differentially expressed long noncoding RNAs and genes of morphine tolerance via bioinformatic analysis. J Comput Biol. 26:1379–1393. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zou YF, Meng LB, Wang QQ, He ZK, Hu CH, Shan MJ, Wang DY and Yu X: Identification and functional enrichment analysis of potential diagnostic and therapeutic targets in adamantinomatous craniopharyngioma. J Comput Biol. 27:55–68. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu J, Fu X and Yang A: Identification of key genes and pathways in tongue squamous cell carcinoma using bioinformatics analysis. Med Sci Monit. 23:5924–5932. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wu Q, Liu D and Wang X: miR-27b suppresses tongue squamous cell carcinoma epithelial-mesenchymal transition by targeting ITGA5. Onco Targets Ther. 13:11855–11867. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Guo Y and Yan W: lncRNA RP5-916L7.2 correlates with advanced tumor stage, and promotes cells proliferation while inhibits cells apoptosis through targeting miR-328 and miR-939 in tongue squamous cell carcinoma. Clin Biochem. 67:24–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meng LB, Shan MJ, Qiu Y, Qi R, Yu ZM, Guo P, Di CY and Gong T: TPM2 as a potential predictive biomarker for atherosclerosis. Aging (Albany NY). 11:6960–6982. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Du W, Chen Z and Xiang C: Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res. 359:449–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kramerova I, Kumagai-Cresse C, Ermolova N, Mokhonova E, Marinov M, Capote J, Becerra D, Quattrocelli M, Crosbie RH, Welch E, et al: Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Hum Mol Genet. 28:3431–3442. 2019. View Article : Google Scholar : PubMed/NCBI | |
Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, Jiang Y, Kass DJ, Gibson K, Chen W, et al: Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 54:18024412019. View Article : Google Scholar : PubMed/NCBI | |
Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G and Libra M: NF-κB inhibition is associated with OPN/MMP-9 downregulation in cutaneous melanoma. Oncol Rep. 37:737–746. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shevde LA and Samant RS: Role of osteopontin in the pathophysiology of cancer. Matrix Biol. 37:131–141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yang R, Sun X, Miao S, Lu T, Wang Y, Wo Y and Jiao W: Identification of SPP1 as a promising biomarker to predict clinical outcome of lung adenocarcinoma individuals. Gene. 679:398–404. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choe EK, Yi JW, Chai YJ and Park KJ: Upregulation of the adipokine genes ADIPOR1 and SPP1 is related to poor survival outcomes in colorectal cancer. J Surg Oncol. 117:1833–1840. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y and Xu Q: SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 91:1167–1177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang HH, Wang XW and Tang CE: Osteopontin expression in nasopharyngeal carcinoma: Its relevance to the clinical stage of the disease. J Cancer Res Ther. 7:138–142. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Luo X, Feng S, Li J, Fan Y, Wen W and Li H: Osteopontin promotes EZH2 expression and tumor progression in nasopharyngeal carcinoma. ORL J Otorhinolaryngol Relat Spec. 76:273–281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Peng X, Guo P and Yang G: Association of osteopontin polymorphism with cancer risk: A meta-analysis. Int J Clin Exp Med. 8:20911–20917. 2015.PubMed/NCBI | |
Zou B, Li J, Xu K, Liu JL, Yuan DY, Meng Z and Zhang B: Identification of key candidate genes and pathways in oral squamous cell carcinoma by integrated Bioinformatics analysis. Exp Ther Med. 17:4089–4099. 2019.PubMed/NCBI | |
Zhang C, Man DP, Ma SM, Cao SW and Li DW: Expressions and significances of CD147, OPN and MMP-2 in oral squamous cell carcinoma. Sichuan Da Xue Xue Bao Yi Xue Ban. 43:683–686. 2012.(In Chinese). PubMed/NCBI | |
Ito T, Hashimoto Y, Tanaka E, Kan T, Tsunoda S, Sato F, Higashiyama M, Okumura T and Shimada Y: An inducible short-hairpin RNA vector against osteopontin reduces metastatic potential of human esophageal squamous cell carcinoma in vitro and in vivo. Clin Cancer Res. 12:1308–1316. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Peng J, Chen X, Li H, Song M, Cheng B and Wu T: Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma. Oral Oncol. 89:14–22. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang L, Tan X, Lin Y, Han X, Wang H, Ming H, Li Q, Liu K and Feng G: Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell Mol Biol Lett. 23:532018. View Article : Google Scholar : PubMed/NCBI | |
D'Addazio G, Artese L, Traini T, Rubini C, Caputi S and Sinjari B: Immunohistochemical study of osteopontin in oral squamous cell carcinoma allied to fractal dimension. J Biol Regul Homeost Agents. 32:1033–1038. 2018.PubMed/NCBI | |
Huang CF, Yu GT, Wang WM, Liu B and Sun ZJ: Prognostic and predictive values of SPP1, PAI and caveolin-1 in patients with oral squamous cell carcinoma. Int J Clin Exp Pathol. 7:6032–6039. 2014.PubMed/NCBI | |
Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, Cui Q, Wang C, Chen R, Yu Y, et al: The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res. 38:3862019. View Article : Google Scholar : PubMed/NCBI | |
Aota Y, An HS, Homandberg G, Thonar EJ, Andersson GB, Pichika R and Masuda K: Differential effects of fibronectin fragment on proteoglycan metabolism by intervertebral disc cells: A comparison with articular chondrocytes. Spine (Phila Pa 1976). 30:722–728. 2005. View Article : Google Scholar : PubMed/NCBI | |
Beumer S, Heijnen HF, IJsseldijk MJ, Orlando E, de Groot PG and Sixma JJ: Platelet adhesion to fibronectin in flow: The importance of von Willebrand factor and glycoprotein Ib. Blood. 86:3452–3460. 1995. View Article : Google Scholar : PubMed/NCBI | |
Filenius S, Tervo T and Virtanen I: Production of fibronectin and tenascin isoforms and their role in the adhesion of human immortalized corneal epithelial cells. Invest Ophthalmol Vis Sci. 44:3317–3325. 2003. View Article : Google Scholar : PubMed/NCBI | |
Amary F, Perez-Casanova L, Ye H, Cottone L, Strobl AC, Cool P, Miranda E, Berisha F, Aston W, Rocha M, et al: Synovial chondromatosis and soft tissue chondroma: Extraosseous cartilaginous tumor defined by FN1 gene rearrangement. Mod Pathol. 32:1762–1771. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Liu C, Zhang TN, Zhu YW, Dong X and Xue P: Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion. J Cell Biochem. 119:4717–4728. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pankov R and Yamada KM: Fibronectin at a glance. J Cell Sci. 115:3861–3863. 2002. View Article : Google Scholar : PubMed/NCBI | |
Morita Y, Hata K, Nakanishi M, Omata T, Morita N, Yura Y, Nishimura R and Yoneda T: Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma. Clin Exp Metastasis. 32:739–753. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yen CY, Huang CY, Hou MF, Yang YH, Chang CH, Huang HW, Chen CH and Chang HW: Evaluating the performance of fibronectin 1 (FN1), integrin α4β1 (ITGA4), syndecan-2 (SDC2), and glycoprotein CD44 as the potential biomarkers of oral squamous cell carcinoma (OSCC). Biomarkers. 18:63–72. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suresh A, Vannan M, Kumaran D, Gümüs ZH, Sivadas P, Murugaian EE, Kekatpure V, Iyer S, Thangaraj K and Kuriakose MA: Resistance/response molecular signature for oral tongue squamous cell carcinoma. Dis Markers. 32:51–64. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Pan J, Li L, Wang Z, Xiao W and Li N: Survey of risk factors contributed to lymphatic metastasis in patients with oral tongue cancer by immunohistochemistry. J Oral Pathol Med. 40:127–134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brinkhof B, Zhang B, Cui Z, Ye H and Wang H: ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X. 5:1000312020. View Article : Google Scholar : PubMed/NCBI | |
Zhan S, Li J, Wang T and Ge W: Quantitative proteomics analysis of sporadic medullary thyroid cancer reveals FN1 as a potential novel candidate prognostic biomarker. Oncologist. 23:1415–1425. 2018. View Article : Google Scholar : PubMed/NCBI |