1
|
Fischer PM, Endicott J and Meijer L:
Cyclin-dependent kinase inhibitors. Prog Cell Cycle Res. 5:235–248.
2003.PubMed/NCBI
|
2
|
Lukasik P, Zaluski M and Gutowska I:
Cyclin-dependent kinases (CDK) and their role in diseases
development-review. Int J Mol Sci. 22:29352021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Suryadinata R, Sadowski M and Sarcevic B:
Control of cell cycle progression by phosphorylation of
cyclin-dependent kinase (CDK) substrates. Biosci Rep. 30:243–255.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gitig DM and Koff A: Cdk pathway:
Cyclin-dependent kinases and cyclin-dependent kinase inhibitors.
Methods Mol Biol. 142:109–123. 2000.PubMed/NCBI
|
5
|
Weinberg RA: The molecular basis of
carcinogenesis: Understanding the cell cycle clock. Cytokines Mol
Ther. 2:105–110. 1996.PubMed/NCBI
|
6
|
Ewen ME, Sluss HK, Sherr CJ, Matsushime H,
Kato J and Livingston DM: Functional interactions of the
retinoblastoma protein with mammalian D-type cyclins. Cell.
73:487–497. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Casimiro MC, Crosariol M, Loro E, Ertel A,
Yu Z, Dampier W, Saria EA, Papanikolaou A, Stanek TJ, Li Z, et al:
ChIP sequencing of cyclin D1 reveals a transcriptional role in
chromosomal instability in mice. J Clin Invest. 122:833–843. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hydbring P, Malumbres M and Sicinski P:
Non-canonical functions of cell cycle cyclins and cyclin-dependent
kinases. Nat Rev Mol Cell Biol. 17:280–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kollmann K, Heller G, Schneckenleithner C,
Warsch W, Scheicher R, Ott RG, Schäfer M, Fajmann S, Schlederer M,
Schiefer AI, et al: A Kinase-Independent function of CDK6 links the
cell cycle to tumor angiogenesis. Cancer Cell. 24:167–181. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bienvenu F, Jirawatnotai S, Elias JE,
Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT,
Odajima J, et al: Transcriptional role of cyclin D1 in development
revealed by a genetic-proteomic screen. Nature. 463:374–378. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Jirawatnotai S, Hu Y, Michowski W, Elias
JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB,
et al: A function for cyclin D1 in DNA repair uncovered by protein
interactome analyses in human cancers. Nature. 474:230–234. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Anders L, Ke N, Hydbring P, Choi YJ,
Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P and
Sicinski P: A systematic screen for CDK4/6 substrates links FOXM1
phosphorylation to senescence suppression in cancer cells. Cancer
Cell. 20:620–634. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Miliani de Marval PL, Macias E, Conti CJ
and Rodriguez-Puebla ML: Enhanced malignant tumorigenesis in Cdk4
transgenic mice. Oncogene. 23:1863–1873. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Macias E, Miliani de Marval PL, De Siervi
A, Conti CJ, Senderowicz AM and Rodriguez-Puebla ML: CDK2
activation in mouse epidermis induces keratinocyte proliferation
but does not affect skin tumor development. Am J Pathol.
173:526–535. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang X, Sistrunk C and Rodriguez-Puebla
ML: Unexpected reduction of skin tumorigenesis on expression of
cyclin-dependent kinase 6 in mouse epidermis. Am J Pathol.
178:345–354. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Adon AM, Zeng X, Harrison MK, Sannem S,
Kiyokawa H, Kaldis P and Saavedra HI: Cdk2 and Cdk4 regulate the
centrosome cycle and are critical mediators of centrosome
amplification in p53-null cells. Mol Cell Biol. 30:694–710. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Carmena M, Wheelock M, Funabiki H and
Earnshaw WC: The chromosomal passenger complex (CPC): From easy
rider to the godfather of mitosis. Nat Rev Mol Cell Biol.
13:789–803. 2012. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Musacchio A and Salmon ED: The
spindle-assembly checkpoint in space and time. Nat Rev Mol Cell
Biol. 8:379–393. 2007. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Peters AH, Kubicek S, Mechtler K,
O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S,
Tachibana M, Shinkai Y, et al: Partitioning and plasticity of
repressive histone methylation states in mammalian chromatin. Mol
Cell. 12:1577–1589. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
D'Avino PP and Capalbo L: New auroras on
the roles of the chromosomal passenger complex in cytokinesis:
Implications for cancer therapies. Front Oncol. 5:2212015.
|
21
|
Strickland JE, Greenhalgh DA, Koceva-Chyla
A, Hennings H, Restrepo C, Balaschak M and Yuspa SH: Development of
murine epidermal cell lines which contain an activated rasHa
oncogene and form papillomas in skin grafts on athymic nude mouse
hosts. Cancer Res. 48:165–169. 1988.PubMed/NCBI
|
22
|
Hennings H, Michael D, Lichti U and Yuspa
SH: Response of carcinogen-altered mouse epidermal cells to phorbol
ester tumor promoters and calcium. J Invest Dermatol. 88:60–65.
1987. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yuspa SH and Morgan DL: Mouse skin cells
resistant to terminal differentiation associated with initiation of
carcinogenesis. Nature. 293:72–74. 1981. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lichti U, Anders J and Yuspa SH: Isolation
and short-term culture of primary keratinocytes, hair follicle
populations and dermal cells from newborn mice and keratinocytes
from adult mice for in vitro analysis and for grafting to
immunodeficient mice. Nat Protoc. 3:799–810. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Miliani de Marval PL, Kim SH and
Rodriguez-Puebla ML: Isolation and characterization of a stem cell
side-population from mouse hair follicles. Methods Mol Biol.
1195:259–268. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kitagawa M and Lee SH: The chromosomal
passenger complex (CPC) as a key orchestrator of orderly mitotic
exit and cytokinesis. Front Cell Dev Biol. 3:142015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Madine MA, Swietlik M, Pelizon C,
Romanowski P, Mills AD and Laskey RA: The roles of the MCM, ORC,
and Cdc6 proteins in determining the replication competence of
chromatin in quiescent cells. J Struct Biol. 129:198–210. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Martini E, Roche DM, Marheineke K,
Verreault A and Almouzni G: Recruitment of phosphorylated chromatin
assembly factor 1 to chromatin after UV irradiation of human cells.
J Cell Biol. 143:563–575. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Geng Y, Whoriskey W, Park MY, Bronson RT,
Medema RH, Li T, Weinberg RA and Sicinski P: Rescue of cyclin D1
deficiency by knockin cyclin E. Cell. 97:767–777. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hennings H, Robinson VA, Michael DM, Petit
GR, Jung R and Yuspa SH: Development of an in vitro analogue of
initiated mouse epidermis to study tumor promoters and
antipromoters. Cancer Res. 50:4794–4800. 1990.PubMed/NCBI
|
31
|
Li HN, Zheng WH, Du YY, Wang G, Dong ML,
Yang ZF and Li XR: ZW10 interacting kinetochore protein may serve
as a prognostic biomarker for human breast cancer: An integrated
bioinformatics analysis. Oncol Lett. 19:2163–2174. 2020.PubMed/NCBI
|
32
|
Pauleau AL, Bergner A, Kajtez J and
Erhardt S: The checkpoint protein Zw10 connects CAL1-dependent
CENP-A centromeric loading and mitosis duration in
Drosophila cells. PLoS Genet. 15:e10083802019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Park Y, Kim JS and Oh JS: Zw10 is a
spindle assembly checkpoint protein that regulates meiotic
maturation in mouse oocytes. Histochem Cell Biol. 152:207–215.
2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Leonard J, Sen N, Torres R, Sutani T,
Jarmuz A, Shirahige K and Aragón L: Condensin relocalization from
centromeres to chromosome arms promotes Top2 recruitment during
anaphase. Cell Rep. 13:2336–2344. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bermejo R, Capra T, Gonzalez-Huici V,
Fachinetti D, Cocito A, Natoli G, Katou Y, Mori H, Kurokawa K,
Shirahige K and Foiani M: Genome-organizing factors Top2 and Hmo1
prevent chromosome fragility at sites of S phase transcription.
Cell. 138:870–884. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gruneberg U, Neef R, Honda R, Nigg EA and
Barr FA: Relocation of Aurora B from centromeres to the central
spindle at the metaphase to anaphase transition requires MKlp2. J
Cell Biol. 166:167–172. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Neuman E, Ladha MH, Lin N, Upton TM,
Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M and
Ewen ME: Cyclin D1 stimulation of estrogen receptor transcriptional
activity independent of cdk4. Mol Cell Biol. 17:5338–5347. 1997.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Burgess A, Wigan M, Giles N, Depinto W,
Gillespie P, Stevens F and Gabrielli B: Inhibition of S/G2 phase
CDK4 reduces mitotic fidelity. J Biol Chem. 281:9987–9995. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gabrielli BG, Sarcevic B, Sinnamon J,
Walker G, Castellano M, Wang XQ and Ellem KA: A cyclin D-Cdk4
activity required for G2 phase cell cycle progression is inhibited
in ultraviolet radiation-induced G2 phase delay. J Biol Chem.
274:13961–13969. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kimura M, Uchida C, Takano Y, Kitagawa M
and Okano Y: Cell cycle-dependent regulation of the human aurora B
promoter. Biochem Biophys Res Commun. 316:930–936. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kimura M, Kotani S, Hattori T, Sumi N,
Yoshioka T, Todokoro K and kano Y: Cell cycle-dependent expression
and spindle pole localization of a novel human protein kinase, Aik,
related to Aurora of Drosophila and yeast Ipl1. J Biol Chem.
272:13766–13771. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fry DW, Harvey PJ, Keller PR, Elliott WL,
Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK and
Toogood PL: Specific inhibition of cyclin-dependent kinase 4/6 by
PD 0332991 and associated antitumor activity in human tumor
xenografts. Mol Cancer Ther. 3:1427–1438. 2004.PubMed/NCBI
|
43
|
Toogood PL, Harvey PJ, Repine JT, Sheehan
DJ, VanderWel SN, Zhou H, Keller PR, McNamara DJ, Sherry D, Zhu T,
et al: Discovery of a potent and selective inhibitor of
cyclin-dependent kinase 4/6. J Med Chem. 48:2388–2406. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Infante JR, Cassier PA, Gerecitano JF,
Witteveen PO, Chugh R, Ribrag V, Chakraborty A, Matano A, Dobson
JR, Crystal AS, et al: A Phase I study of the cyclin-dependent
kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced
solid tumors and lymphomas. Clin Cancer Res. 22:5696–5705. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Patnaik A, Rosen LS, Tolaney SM, Tolcher
AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW,
Hilton JF, et al: Efficacy and safety of abemaciclib, an inhibitor
of CDK4 and CDK6, for patients with breast cancer, non-small cell
lung cancer, and other solid tumors. Cancer Discov. 6:740–753.
2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rodriguez-Puebla ML, Miliani de Marval PL,
LaCava M, Moons DS, Kiyokawa H and Conti CJ: Cdk4 deficiency
inhibits skin tumor development but does not affect normal
keratinocyte proliferation. Am J Pathol. 161:405–411. 2002.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Miliani de Marval PL, Macias E, Rounbehler
R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ and
Rodriguez-Puebla ML: Lack of cyclin-dependent kinase 4 inhibits
c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol.
24:7538–7547. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Glover DM, Leibowitz MH, McLean DA and
Parry H: Mutations in aurora prevent centrosome separation leading
to the formation of monopolar spindles. Cell. 81:95–105. 1995.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Gopalan G, Chan CS and Donovan PJ: A novel
mammalian, mitotic spindle-associated kinase is related to yeast
and fly chromosome segregation regulators. J Cell Biol.
138:643–656. 1997. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gonzalez-Loyola A, Fernandez-Miranda G,
Trakala M, Partida D, Samejima K, Ogawa H, Cañamero M, de Martino
A, Martínez-Ramírez Á, de Cárcer G, et al: Aurora B overexpression
causes aneuploidy and p21Cip1 repression during tumor development.
Mol Cell Biol. 35:3566–3578. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nguyen HG, Makitalo M, Yang D, Chinnappan
D, St Hilaire C and Ravid K: Deregulated Aurora-B induced
tetraploidy promotes tumorigenesis. FASEB J. 23:2741–2748. 2009.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Nguyen HG and Ravid K:
Tetraploidy/aneuploidy and stem cells in cancer promotion: The role
of chromosome passenger proteins. J Cell Physiol. 208:12–22. 2006.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Giet R, Petretti C and Prigent C: Aurora
kinases, aneuploidy and cancer, a coincidence or a real link?
Trends Cell Biol. 15:241–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
54
|
Katayama H, Brinkley WR and Sen S: The
Aurora kinases: Role in cell transformation and tumorigenesis.
Cancer Metastasis Rev. 22:451–464. 2003. View Article : Google Scholar : PubMed/NCBI
|
55
|
Yu Q, Geng Y and Sicinski P: Specific
protection against breast cancers by cyclin D1 ablation. Nature.
411:1017–1021. 2001. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yu Q, Sicinska E, Geng Y, Ahnström M,
Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stål O and
Sicinski P: Requirement for CDK4 kinase function in breast cancer.
Cancer Cell. 9:23–32. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Finn RS, Martin M, Rugo HS, Jones S, Im
SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, et al:
Palbociclib and letrozole in advanced breast cancer. N Engl J Med.
375:1925–1936. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Long F, He Y, Fu H, Li Y, Bao X, Wang Q,
Wang Y, Xie C and Lou L: Preclinical characterization of SHR6390, a
novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft
models. Cancer Sci. 110:1420–1430. 2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Bisi JE, Sorrentino JA, Jordan JL, Darr
DD, Roberts PJ, Tavares FX and Strum JC: Preclinical development of
G1T38: A novel, potent and selective inhibitor of cyclin dependent
kinases 4/6 for use as an oral antineoplastic in patients with
CDK4/6 sensitive tumors. Oncotarget. 8:42343–42358. 2017.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Dean JL, Thangavel C, McClendon AK, Reed
CA and Knudsen ES: Therapeutic CDK4/6 inhibition in breast cancer:
Key mechanisms of response and failure. Oncogene. 29:4018–4032.
2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Dean JL, McClendon AK, Hickey TE, Butler
LM, Tilley WD, Witkiewicz AK and Knudsen ES: Therapeutic response
to CDK4/6 inhibition in breast cancer defined by ex vivo analyses
of human tumors. Cell Cycle. 11:2756–2761. 2012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Schwartz GK, LoRusso PM, Dickson MA,
Randolph SS, Shaik MN, Wilner KD, Courtney R and O'Dwyer PJ: Phase
I study of PD 0332991, a cyclin-dependent kinase inhibitor,
administered in 3-week cycles (Schedule 2/1). Br J Cancer.
104:1862–1868. 2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Zhang YX, Sicinska E, Czaplinski JT,
Remillard SP, Moss S, Wang Y, Brain C, Loo A, Snyder EL, Demetri
GD, et al: Antiproliferative effects of CDK4/6 inhibition in
CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer
Ther. 13:2184–2193. 2014. View Article : Google Scholar : PubMed/NCBI
|