1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ohadian Moghadam S and Nowroozi MR:
Toll-like receptors: The role in bladder cancer development,
progression and immunotherapy. Scand J Immunol. 90:e128182019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Tan TZ, Mathieu R, Tan KT, Huang YJ and
Jean-Paul T: Molecular subtypes of urothelial bladder cancer:
Results from a meta-cohort analysis of 2411 Tumors. Eur Urol.
75:423–432. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
McConkey DJ and Lerner SP: SIU-ICUD
consultation on bladder cancer: Basic science. World J Urol.
37:15–29. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Moremen KW, Tiemeyer M and Nairn AV:
Vertebrate protein glycosylation: Diversity, synthesis and
function. Nat Rev Mol Cell Biol. 13:448–462. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tang L and Chen X, Zhang X, Guo Y, Su J,
Zhang J, Peng C and Chen X: N-Glycosylation in progression of skin
cancer. Med Oncol. 36:502019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Silsirivanit A: Glycosylation markers in
cancer. Adv Clin Chem. 89:189–213. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Munkley J: Glycosylation is a global
target for androgen control in prostate cancer cells. Endocr Relat
Cancer. 24:R49–R64. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hoja-Lukowicz D, Przybylo M, Duda M,
Pochec E and Bubka M: On the trail of the glycan codes stored in
cancer-related cell adhesion proteins. Biochim Biophys Acta Gen
Subj. 1861:3237–3257. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Vajaria BN and Patel PS: Glycosylation: A
hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Veillon L, Fakih C, Abou-El-Hassan H,
Kobeissy F and Mechref Y: Glycosylation changes in brain cancer.
ACS Chem Neurosci. 9:51–72. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Natoni A, Bohara R, Pandit A and O'Dwyer
M: Targeted approaches to inhibit sialylation of multiple myeloma
in the bone marrow microenvironment. Front Bioeng Biotechnol.
7:2522019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Natoni A, Macauley MS and O'Dwyer ME:
Targeting selectins and their ligands in cancer. Front Oncol.
6:932016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Weijers CA, Franssen MC and Visser GM:
Glycosyltransferase-catalyzed synthesis of bioactive
oligosaccharides. Biotechnol Adv. 26:436–456. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Y and Chen X: Sialic acid metabolism
and sialyltransferases: Natural functions and applications. Appl
Microbiol Biotechnol. 94:887–905. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bhide GP and Colley KJ: Sialylation of
N-glycans: Mechanism, cellular compartmentalization and function.
Histochem Cell Biol. 147:149–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Park HJ, Kim JH, Yoon JS, Choi YJ, Choi
YH, Kook KH and Choi JH: Identification and functional
characterization of ST3GAL5 and ST8SIA1 variants in patients with
thyroid-associated ophthalmopathy. Yonsei Med J. 58:1160–1169.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun
J, Mu H, Do KA, Ueno NT, Andreeff M and Battula VL: ST8SIA1
regulates tumor growth and metastasis in TNBC by activating the
FAK-AKT-mTOR signaling pathway. Mol Cancer Ther. 17:2689–2701.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Charlton ME, Adamo MP, Sun L and Deorah S:
Bladder cancer collaborative stage variables and their data
quality, usage, and clinical implications: A review of SEER data,
2004–2010. Cancer. 120 (Suppl 23):3815–3825. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li F and Ding J: Sialylation is involved
in cell fate decision during development, reprogramming and cancer
progression. Protein Cell. 10:550–565. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mehta KA, Patel KA, Pandya SJ and Patel
PS: ‘Aberrant sialylation plays a significant role in oral squamous
cell carcinoma progression’. J Oral Pathol Med. 49:253–259. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gomes C, Almeida A, Barreira A, Calheiros
J, Pinto F, Abrantes R, Costa A, Polonia A, Polonia A, Osório H, et
al: Carcinoembryonic antigen carrying SLeX as a new
biomarker of more aggressive gastric carcinomas. Theranostics.
9:7431–7446. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang X, Yang X, Chen M, Zheng S, Li J,
Lin S and Wang X: ST3Gal3 confers paclitaxel-mediated
chemoresistance in ovarian cancer cells by attenuating caspase-8/3
signaling. Mol Med Rep. 20:4499–4506. 2019.PubMed/NCBI
|
25
|
Yu S, Fan J, Liu L, Zhang L, Wang S and
Zhang J: Caveolin-1 up-regulates integrin α2,6-sialylation to
promote integrin α5β1-dependent hepatocarcinoma cell adhesion. FEBS
Lett. 587:782–787. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ghosh S: Sialylation and sialyltransferase
in insects. Glycoconj J. 35:433–441. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shan Y, Liu Y, Zhao L, Liu B, Li Y and Jia
L: MicroRNA-33a and let-7e inhibit human colorectal cancer
progression by targeting ST8SIA1. Int J Biochem Cell Biol.
90:48–58. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Danolic D, Heffer M, Wagner J, Skrlec I,
Alvir I, Mamic I, Susnjar L, Banovic M, Danolić D and Puljiz M:
Role of ganglioside biosynthesis genetic polymorphism in cervical
cancer development. J Obstet Gynaecol. 40:1127–1132. 2020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yeh SC, Wang PY, Lou YW, Khoo KH, Hsiao M,
Hsu TL and Wong CH: Glycolipid GD3 and GD3 synthase are key drivers
for glioblastoma stem cells and tumorigenicity. Proc Natl Acad Sci
USA. 113:5592–5597. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bernardo A, Harrison FE, McCord M, Zhao J,
Bruchey A, Davies SS, Jackson Roberts L II, Mathews PM, Matsuoka Y,
Ariga T, et al: Elimination of GD3 synthase improves memory and
reduces amyloid-beta plaque load in transgenic mice. Neurobiol
Aging. 30:1777–1791. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mandal C, Sarkar S, Chatterjee U,
Schwartz-Albiez R and Mandal C: Disialoganglioside GD3-synthase
over expression inhibits survival and angiogenesis of pancreatic
cancer cells through cell cycle arrest at S-phase and disruption of
integrin-β1-mediated anchorage. Int J Biochem Cell Biol.
53:162–173. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Weisenberger DJ: Characterizing DNA
methylation alterations from the cancer genome atlas. J Clin
Invest. 124:17–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Arumuggam N, Bhowmick NA and Rupasinghe
HP: A Review: Phytochemicals targeting JAK/STAT signaling and IDO
expression in cancer. Phytother Res. 29:805–817. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang H, Isaji T, Satoh M, Li D, Arai Y and
Gu J: Antitumor effects of exogenous ganglioside GM3 on bladder
cancer in an orthotopic cancer model. Urology. 81:210.e11–5. 2013.
View Article : Google Scholar : PubMed/NCBI
|