1
|
Yao X, Li D, Xiong DM, Li L, Jiang R and
Chen JX: A novel role of ribonuclease inhibitor in regulation of
epithelial-to-mesenchymal transition and ILK signaling pathway in
bladder cancer cells. Cell Tissue Res. 353:409–423. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang Y, Deng S, Zeng Q, Hu W and Chen T:
Highly stable selenadiazole derivatives induce bladder cancer cell
apoptosis and inhibit cell migration and invasion through the
activation of ROS-mediated signaling pathways. Dalton Trans.
45:18465–18475. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Soria F, Krabbe LM, Todenhöfer T, Dobruch
J, Mitra AP, Inman BA, Gust KM, Lotan Y and Shariat SF: Molecular
markers in bladder cancer. World J Urol. 37:31–40. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Radosavljevic V and Belojevic G:
Shortcomings in bladder cancer etiology research and a model for
its prevention. Tumori. 100:1–8. 2014.PubMed/NCBI
|
6
|
Jordan EJ and Iyer G: Targeted therapy in
advanced bladder cancer: What have we learned? Urol Clin North Am.
42253–262. (ix)2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pan CX, Zhang H, Tepper CG, Lin TY, Davis
RR, Keck J, Ghosh PM, Gill P, Airhart S, Bult C, et al: Development
and characterization of bladder cancer patient-derived xenografts
for molecularly guided targeted therapy. PLoS One. 10:e01343462015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hou T, Zhou L, Wang L, Kazobinka G, Zhang
X and Chen Z: CLCA4 inhibits bladder cancer cell proliferation,
migration, and invasion by suppressing the PI3K/AKT pathway.
Oncotarget. 8:93001–93013. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ciccarese C, Massari F, Blanca A, Tortora
G, Montironi R, Cheng L, Scarpelli M, Raspollini MR, Vau N, Fonseca
J and Lopez-Beltran A: Tp53 and its potential therapeutic role as a
target in bladder cancer. Expert Opin Ther Targets. 21:401–414.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Blom T, Li S, Dichlberger A, Bäck N, Kim
YA, Loizides-Mangold U, Riezman H, Bittman R and Ikonen E: LAPTM4B
facilitates late endosomal ceramide export to control cell death
pathways. Nat Chem Biol. 11:799–806. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo
J, Wang Y and Xu Y: miR-188-5p inhibits tumour growth and
metastasis in prostate cancer by repressing LAPTM4B expression.
Oncotarget. 6:6092–6104. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Y, Zhang Q, Tian R, Wang Q, Zhao JJ,
Iglehart JD, Wang ZC and Richardson AL: Lysosomal transmembrane
protein LAPTM4B promotes autophagy and tolerance to metabolic
stress in cancer cells. Cancer Res. 71:7481–7489. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou K, Dichlberger A, Martinez-Seara H,
Nyholm TKM, Li S, Kim YA, Vattulainen I, Ikonen E and Blom T: A
ceramide-regulated element in the late endosomal protein LAPTM4B
controls amino acid transporter interaction. ACS Cent Sci.
4:548–558. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Meng Y, Wang L, Chen D, Chang Y, Zhang M,
Xu JJ, Zhou R and Zhang QY: LAPTM4B: An oncogene in various solid
tumors and its functions. Oncogene. 35:6359–6365. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang H, Xiong F, Qi R, Liu Z, Lin M, Rui
J, Su J and Zhou R: LAPTM4B-35 is a novel prognostic factor of
hepatocellular carcinoma. J Surg Oncol. 101:363–369. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiao M, Jia S, Wang H, Wang J, Huang Y and
Li Z: Overexpression of LAPTM4B: An independent prognostic marker
in breast cancer. J Cancer Res Clin Oncol. 139:661–667. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang H, Tian B, Yu H, Yao H and Gao Z:
LAPTM4B-35 protein as a potential therapeutic target in gastric
cancer. Tumour Biol. 35:12737–12742. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lebovitz CB, Robertson AG, Goya R, Jones
SJ, Morin RD, Marra MA and Gorski SM: Cross-cancer profiling of
molecular alterations within the human autophagy interaction
network. Autophagy. 11:1668–1687. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang L, Meng Y, Xu JJ and Zhang QY: The
transcription factor AP4 promotes oncogenic phenotypes and
cisplatin resistance by regulating LAPTM4B expression. Mol Cancer
Res. 16:857–868. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tian M, Chen Y, Tian D, Qiao X, Ma Z and
Li J: Beclin1 antagonizes LAPTM4B-mediated EGFR overactivation in
gastric cancer cells. Gene. 626:48–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang Y, Zhao Z, Xie C and Zhao Y:
Dual-targeting liposome modified by glutamic hexapeptide and folic
acid for bone metastatic breast cancer. Chem Phys Lipids.
228:1048822020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mahdavifar N, Ghoncheh M, Pakzad R,
Momenimovahed Z and Salehiniya H: Epidemiology, incidence and
mortality of bladder cancer and their relationship with the
development index in the world. Asian Pac J Cancer Prev.
17:381–386. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jung HK, Kim S, Park RW, Park JY, Kim IS
and Lee B: Bladder tumor-targeted delivery of pro-apoptotic peptide
for cancer therapy. J Control Release. 235:259–267. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hussain SA, Palmer DH, Syn WK, Sacco JJ,
Greensmith RMD, Elmetwali T, Aachi V, Lloyd BH, Jithesh PV, Arrand
J, et al: Gene expression profiling in bladder cancer identifies
potential therapeutic targets. Int J Oncol. 50:1147–1159. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen MW, Wei XD, Shi X, Lu L, Zhang G,
Huang Y and Hou J: LncRNA HIF1A-AS2 accelerates malignant
phenotypes of renal carcinoma by modulating miR-30a-5p/SOX4 axis as
a ceRNA. Cancer Biol Med. 18:587–603. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen M, Zhuang C, Liu Y, Li J, Dai F, Xia
M, Zhan Y, Lin J, Chen Z, He A, et al: Tetracycline-inducible shRNA
targeting antisense long non-coding RNA HIF1A-AS2 represses the
malignant phenotypes of bladder cancer. Cancer Lett. 376:155–164.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun Z, Niu S, Xu F, Zhao W, Ma R and Chen
M: CircAMOTL1 promotes tumorigenesis through miR-526b/SIK2 axis in
cervical cancer. Front Cell Dev Biol. 8:5681902020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li S, Wang L, Meng Y, Chang Y, Xu J and
Zhang Q: Increased levels of LAPTM4B, VEGF and survivin are
correlated with tumor progression and poor prognosis in breast
cancer patients. Oncotarget. 8:41282–41293. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li L, Shan Y, Yang H, Zhang S, Lin M, Zhu
P, Chen XY, Yi J, McNutt MA, Shao GZ and Zhou RL: Upregulation of
LAPTM4B-35 promotes malignant transformation and tumorigenesis in
L02 human liver cell line. Anat Rec (Hoboken). 294:1135–1142. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Iglehart JD, Richardson AL and Wang
ZC: The amplified cancer gene LAPTM4B promotes tumor growth and
tolerance to stress through the induction of autophagy. Autophagy.
8:273–274. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Meng Y, Wang L, Xu J and Zhang Q: AP4
positively regulates LAPTM4B to promote hepatocellular carcinoma
growth and metastasis, while reducing chemotherapy sensitivity. Mol
Oncol. 12:373–390. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Meng F, Chen X, Song H and Lou G: LAPTM4B
down regulation inhibits the proliferation, invasion and
angiogenesis of HeLa cells in vitro. Cell Physiol Biochem.
37:890–900. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xiao M, Yang S, Meng F, Qin Y, Yang Y, Jia
S, Cai X, Li C, Huang Y and Ning X: LAPTM4B predicts axillary lymph
node metastasis in breast cancer and promotes breast cancer cell
aggressiveness in vitro. Cell Physiol Biochem. 41:1072–1082. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Dong X, Tamura K, Kobayashi D, Ando N,
Sumita K and Maehara T: LAPTM4B-35 is a novel prognostic factor for
glioblastoma. J Neurooncol. 132:295–303. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li M, Zhou R, Shan Y, Li L, Wang L and Liu
G: Targeting a novel cancer-driving protein (LAPTM4B-35) by a small
molecule (ETS) to inhibit cancer growth and metastasis. Oncotarget.
7:58531–58542. 2016. View Article : Google Scholar : PubMed/NCBI
|