Protein overexpression of toll‑like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance
- Authors:
- Lili Li
- Zhuoqian Zhou
- Khangvu Mai
- Ping Li
- Zongqi Wang
- Yaxi Wang
- Yang Cao
- Xuemeng Ma
- Tingting Zhang
- Daiyou Wang
-
Affiliations: Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Disease Control and Prevention, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China - Published online on: September 14, 2021 https://doi.org/10.3892/ol.2021.13047
- Article Number: 786
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST and Vermaat JSP: MYD88 in the driver's seat of B-cell lymphomagenesis: From molecular mechanisms to clinical implications. Haematologica. 104:23372019. View Article : Google Scholar : PubMed/NCBI | |
Ali J, Sabiha B, Jan HU, Haider SA, Khan AA and Ali SS: Genetic etiology of oral cancer. Oral Oncol. 70:23–28. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oh HN, Seo JH, Lee MH, Kim C, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Shim JH and Chae JI: Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J Cell Biochem. 119:10118–10130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rivera C: Essentials of oral cancer. Int J Clin Exp Pathol. 8:11884–11894. 2015.PubMed/NCBI | |
Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, et al: Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 97:1407–1427. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lindemann A, Takahashi H, Patel AA, Osman AA and Myers JN: Targeting the DNA damage response in OSCC with TP 53 mutations. J Dent Res. 97:635–644. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roi A, Roi CI, Negruțiu ML, Riviș M, Sinescu C and Rusu LC: The challenges of OSCC diagnosis: Salivary cytokines as potential biomarkers. J Clin Med. 9:28662020. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Alvero AB, Silasi DA and Mor G: Inflammation, cancer and chemoresistance: Taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol. 57:93–107. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mehmeti M, Allaoui R, Bergenfelz C, Saal LH, Ethier SP, Johansson ME, Jirström K and Leandersson K: Expression of functional toll like receptor 4 in estrogen receptor/progesterone receptor-negative breast cancer. Breast Cancer Res. 17:1302015. View Article : Google Scholar : PubMed/NCBI | |
Semlali A, Reddy Parine N, Arafah M, Mansour L, Azzi A, Al Shahrani O, Al Amri A, Shaik JP, Aljebreen AM, Alharbi O, et al: Expression and polymorphism of toll-like receptor 4 and effect on NF-κB mediated inflammation in colon cancer patients. PLoS One. 11:e01463332016. View Article : Google Scholar : PubMed/NCBI | |
Takazawa Y, Kiniwa Y, Ogawa E, Uchiyama A, Ashida A, Uhara H, Goto Y and Okuyama R: Toll-like receptor 4 signaling promotes the migration of human melanoma cells. Tohoku J Exp Med. 234:57–65. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo XZ, He QZ and Wang K: Expression of toll-like receptor 4 in ovarian serous adenocarcinoma and correlation with clinical stage and pathological grade. Int J Clin Exp Med. 8:14323–14327. 2015.PubMed/NCBI | |
Wang JQ, Jeelall YS, Ferguson LL and Horikawa K: Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol. 5:3672014. View Article : Google Scholar : PubMed/NCBI | |
Deguine J and Barton GM: MyD88: A central player in innate immune signaling. F1000Prime Rep. 6:972014. View Article : Google Scholar : PubMed/NCBI | |
Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M and Sano T: High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 102:908–915. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang HY, Zhang ZJ, Cao CB, Wang N, Liu FF, Peng JQ, Ren XJ and Qian J: The TLR4/NF-κB signaling pathway mediates the growth of colon cancer. Eur Rev Med Pharmacol Sci. 18:3834–3843. 2014.PubMed/NCBI | |
Chen X, Zhao F, Zhang H, Zhu Y, Wu K and Tan G: Significance of TLR4/MyD88 expression in breast cancer. Int J Clin Exp Pathol. 8:7034–7039. 2015.PubMed/NCBI | |
Mills SE, Carter D, Greenson JK, Reuter VE and Stoler MH: Sternberg's diagnostic surgical pathology, 5th edition. 2-2. Lippincott Williams & Wilkins; Philidelphia, PA, USA: pp. 2348. 2012 | |
The Union for International Cancer Control (UICC), . TNM History, Evolution and Milestones. https://www.uicc.org/sites/main/files/atoms/files/TNM-History-2021.pdfSeptember 11–2021 | |
Lin SC, Lo YC and Wu H: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 465:885–890. 2010. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Zhou M, Cao Y, Qi J, Geng J and Liu X: Expression of GLP-1 receptor and CD26 in human thyroid C-cells: The association of thyroid C-cell tumorigenesis with incretin-based medicine. Oncol Lett. 13:2684–2690. 2017. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
González-Moles MÁ, Warnakulasuriya S, González-Ruiz I, González-Ruiz L, Ayén Á, Lenouvel D, Ruiz-Ávila I and Ramos-García P: Clinicopathological and prognostic characteristics of oral squamous cell carcinomas arising in patients with oral lichen planus: A systematic review and a comprehensive meta-analysis. Oral Oncol. 106:1046882020. View Article : Google Scholar : PubMed/NCBI | |
Warnakulasuriya S, Johnson NW and Van der Waal I: Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 36:575–580. 2007. View Article : Google Scholar : PubMed/NCBI | |
Güneri P and Epstein JB: Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncol. 50:1131–1136. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng YS, Rees T and Wright J: A review of research on salivary biomarkers for oral cancer detection. Clin Transl Med. 3:32014. View Article : Google Scholar : PubMed/NCBI | |
Rivera C: The challenge of the state of susceptibility to oral cancer. J Oral Res. 4:8–9. 2015. View Article : Google Scholar | |
Sakurai T, Kashida H, Watanabe T, Hagiwara S, Mizushima T, Iijima H, Nishida N, Higashitsuji H, Fujita J and Kudo M: Stress response protein cirp links inflammation and tumorigenesis in colitis-associated cancer. Cancer Res. 74:6119–6128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oshima H and Oshima M: The inflammatory network in the gastrointestinal tumor microenvironment: Lessons from mouse models. J Gastroenterol. 47:97–106. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhu R, Huang Z, Li H and Zhu H: Lipopolysaccharide-induced toll-like receptor 4 signaling in cancer cells promotes cell survival and proliferation in hepatocellular carcinoma. Dig Dis Sci. 58:2223–2236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ and Abreu MT: Cox-2 is regulated by toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology. 131:862–877. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sahu U, Choudhury A, Parvez S, Biswas S and Kar S: Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 8:e26672017. View Article : Google Scholar : PubMed/NCBI | |
Paarnio K, Väyrynen S, Klintrup K, Ohtonen P, Mäkinen MJ, Mäkelä J and Karttunen TJ: Divergent expression of bacterial wall sensing toll-like receptors 2 and 4 in colorectal cancer. World J Gastroenterol. 23:4831–4838. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Wang L and Chen S: Dual character of toll-like receptor signaling: Pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta. 1835:144–154. 2013.PubMed/NCBI | |
Mikulandra M, Pavelic J and Glavan TM: Recent findings on the application of toll-like receptors agonists in cancer therapy. Curr Med Chem. 24:2011–2032. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kubo T, Hatton RD, Oliver J, Liu X, Elson CO and Weaver CT: Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol. 173:7249–7258. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sharma Y and Bala K: Role of toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev. 14:4562020. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Li L, Sun Y, Yang H, Ye Z and Zhao J: Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem. 47:1497–1508. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar : PubMed/NCBI | |
Qin DP, Sun PN, Zhou YJ, Chen FM, Zhang CL, Han JX and Yang XJ: Effect of tripterygium wilfordii polycoride upon inflammation and TLR4/MyD88 signaling pathway in ulcerative colitis rats model. Zhonghua Yi Xue Za Zhi. 96:1444–1449. 2016.(In Chinese). PubMed/NCBI | |
He Z, Deng R, Huang X, Ni Y, Yang X, Wang Z and Hu Q: Lipopolysaccharide enhances OSCC migration by promoting epithelial-mesenchymal transition. J Oral Pathol Med. 44:685–692. 2015. View Article : Google Scholar : PubMed/NCBI | |
Todosi AM, Gavrilescu MM, Aniţei GM, Filip B and Scripcariu V: Colon cancer at the molecular level-usefulness of epithelial-mesenchymal transition analysis. Rev Med Chir Soc Med Nat Iasi. 116:1106–1111. 2012.PubMed/NCBI | |
Zhu X, Burfeind KG, Michaelis KA, Braun TP, Olson B, Pelz KR, Morgan TK and Marks DL: MyD88 signalling is critical in the development of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle. 10:378–390. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zeng Y: Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF-κB signal pathway. Drug Dev Res. 80:353–359. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, Zhu D, Cang J and Luo Z: MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle. 17:2001–2018. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh MV, Cicha MZ, Nunez S, Meyerholz DK, Chapleau MW and Abboud FM: Angiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways. Am J Physiol Heart Circ Physiol. 316:H1027–H1038. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jain A and Pasare C: Innate control of adaptive immunity: Beyond the three-signal paradigm. J Immunol. 198:3791–3800. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dange RB, Agarwal D, Teruyama R and Francis J: Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J Neuroinflammation. 12:312015. View Article : Google Scholar : PubMed/NCBI | |
Kang YM, Zhang DM, Yu XJ, Yang Q, Qi J, Su Q, Suo YP, Yue LY, Zhu GQ and Qin DN: Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol. 274:436–444. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H and Lin JK: Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation. 11:592014. View Article : Google Scholar : PubMed/NCBI | |
Agarwal D, Welsch MA, Keller JN and Francis J: Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol. 106:1069–1085. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gress TW, Nieto FJ, Shahar E, Wofford MR and Brancati FL: Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 342:905–912. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bensimhon HF and Cavender MA: Hypertension treatment in diabetes: Focus on heart failure prevention. Heart Fail Clin. 15:551–563. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stamler J, Vaccaro O, Neaton JD and Wentworth D: Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 16:434–444. 1993. View Article : Google Scholar : PubMed/NCBI | |
Chervonsky A: Innate receptors and microbes in induction of autoimmunity. Curr Opin Immunol. 21:641–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A, Ståhlman M, Matamoros S, Geurts L, Pardo-Tendero MM, Druart C, et al: Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut. 66:620–632. 2017. View Article : Google Scholar : PubMed/NCBI | |
Androulidaki A, Wachsmuth L, Polykratis A and Pasparakis M: Differential role of MyD88 and TRIF signaling in myeloid cells in the pathogenesis of autoimmune diabetes. PLoS One. 13:e01940482018. View Article : Google Scholar : PubMed/NCBI | |
Marwick TH: Diabetic heart disease. Postgrad Med J. 84:188–192. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marwick TH, Ritchie R, Shaw JE and Kaye D: Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 71:339–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mitchell JB, Bubolz T, Paul JE, Pashos CL, Escarce JJ, Muhlbaier LH, Wiesman JM, Young WW, Epstein RS and Javitt JC: Using medicare claims for outcomes research. Med Care. 32 (Suppl 7):JS38–JS51. 1994. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N, Wen L and Wong FS: TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am J Physiol Heart Circ Physiol. 303:H732–H742. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC, et al: Signal regulatory protein-α protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension. 63:96–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park BS, Song DH, Kim HM, Choi BS, Lee H and Lee JO: The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 458:1191–1195. 2009. View Article : Google Scholar : PubMed/NCBI | |
O'Neill LA and Bowie AG: The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol. 7:353–364. 2007. View Article : Google Scholar : PubMed/NCBI | |
Blauvelt A, Lebwohl MG and Bissonnette R: IL-23/IL-17A dysfunction phenotypes inform possible clinical effects from anti-IL-17A therapies. J Invest Dermatol. 135:1946–1953. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, et al: The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 497:498–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Ren T, Xiao C, Li H and Wu T: Nickel promotes the invasive potential of human lung cancer cells via TLR4/MyD88 signaling. Toxicology. 285:25–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Tan W, Cheng S, Wang H, Ye S, Yu C, He Y, Zeng J, Cen J, Hu J, et al: Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-κB pathway. DNA Cell Biol. 34:470–480. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Uramaru N, Ohshita H, Tateno C, Horie T, Kitamura S and Ohta S: Predictability of metabolism of ibuprofen and naproxen using chimeric mice with human hepatocytes. Drug Metab Dispos. 40:2267–2272. 2012. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Nitta K, Sugihara K, Horie T, Kitamura S and Ohta S: CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos. 36:2429–2433. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S, Truitt ML, He N, Ding N, Liddle C, Atkins AR, et al: Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci USA. 114:1129–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S and Khademhosseini A: Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater. 8:18013632019. View Article : Google Scholar | |
Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, Mammoto T, Roberts K, Chung S, Novak R, Ingram M, et al: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 1:00692017. View Article : Google Scholar : PubMed/NCBI | |
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY and Ingber DE: Reconstituting organ-level lung functions on a chip. Science. 328:1662–1668. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Koo BK and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dotti I, Mora-Buch R, Ferrer-Picón E, Planell N, Jung P, Masamunt MC, Leal RF, Martín de Carpi J, Llach J, Ordás I, et al: Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut. 66:2069–2079. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gonneaud A, Asselin C, Boudreau F and Boisvert FM: Phenotypic analysis of organoids by proteomics. Proteomics. 17:2017. View Article : Google Scholar : PubMed/NCBI | |
Akhtar AA, Sances S, Barrett R and Breunig JJ: Organoid and organ-on-a-chip systems: New paradigms for modeling neurological and gastrointestinal disease. Curr Stem Cell Rep. 3:98–111. 2017. View Article : Google Scholar : PubMed/NCBI |