1
|
Van Cutsem E, Sagaert X, Topal B,
Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664.
2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Clevers H: The cancer stem cell: Premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang C, Chen R, Zheng F, Tang Y, Wang X,
Chen Z and Lai X: Inhibitory role of ATF3 in gastric cancer
progression through regulating cell EMT and stemness. Cancer Cell
Int. 21:1272021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cats A, Jansen EPM, van Grieken NCT,
Sikorska K, Lind P, Nordsmark M, Meershoek-Klein Kranenbarg E, Boot
H, Trip AK, Swellengrebel HAM, et al: Chemotherapy versus
chemoradiotherapy after surgery and preoperative chemotherapy for
resectable gastric cancer (CRITICS): An international, open-label,
randomised phase 3 trial. Lancet Oncol. 19:616–628. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Koizumi W, Tanabe S, Azuma M, Ishido K,
Nishimura K, Sasaki T, Nakatani K, Higuchi K, Nakayama N and Katada
C: Impacts of fluorouracil-metabolizing enzymes on the outcomes of
patients treated with S-1 alone or S-1 plus cisplatin for
first-line treatment of advanced gastric cancer. Int J Cancer.
126:162–170. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu Y, Bian T, Feng J, Qian L, Li X, Zhang
Q, Zhang J, Jiang D, Liu J and Shi J: CtBP1 interacts with SOX2 to
promote the growth, migration and invasion of lung adenocarcinoma.
Oncol Rep. 42:67–78. 2019.PubMed/NCBI
|
9
|
Wang Y, Dai C, Zhou C, Li W, Qian Y, Wen
J, Wang Y, Han B, Ma J, Xu J, et al: Benzotriazole enhances cell
invasive potency in endometrial carcinoma through CTBP1-mediated
epithelial-mesenchymal transition. Cell Physiol Biochem.
44:2357–2367. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao C, Shen Y, Tao X, Xu J, Lu J, Liu C,
Xu Z, Tang Q, Tao T and Zhang X: Silencing of CtBP1 suppresses the
migration in human glioma cells. J Mol Histol. 47:297–304. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Moiola CP, De Luca P, Zalazar F, Cotignola
J, Rodríguez-Seguí SA, Gardner K, Meiss R, Vallecorsa P, Pignataro
O, Mazza O, et al: Prostate tumor growth is impaired by CtBP1
depletion in high-fat diet-fed mice. Clin Cancer Res. 20:4086–4095.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Porretti J, Dalton GN, Massillo C, Scalise
GD, Farré PL, Elble R, Gerez EN, Accialini P, Cabanillas AM,
Gardner K, et al: CLCA2 epigenetic regulation by CTBP1, HDACs,
ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion
and EMT in metabolic syndrome disease. Int J Cancer. 143:897–906.
2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dcona MM, Morris BL, Ellis KC and Grossman
SR: CtBP-an emerging oncogene and novel small molecule drug target:
Advances in the understanding of its oncogenic action and
identification of therapeutic inhibitors. Cancer Biol Ther.
18:379–391. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Han Y, Bi Y, Bi H, Diao C, Zhang G, Cheng
K and Yang Z: miR-137 suppresses the invasion and procedure of EMT
of human breast cancer cell line MCF-7 through targeting CtBP1. Hum
Cell. 29:30–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou J, Su M, Zhang H, Wang J and Chen Y:
miR-539-3P inhibits proliferation and invasion of gastric cancer
cells by targeting CTBP1. Int J Clin Exp Pathol. 12:1618–1625.
2019.PubMed/NCBI
|
16
|
Wang C, Wang M, Xing B, Chi Z, Wang H, Lie
C and Dong H: C-terminal of E1A binding protein 1 enhances the
migration of gastric epithelial cells and has a clinicopathologic
significance in human gastric carcinoma. Onco Targets Ther.
12:5189–5200. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Deng Y, Guo W, Xu N, Li F and Li J: CtBP1
transactivates RAD51 and confers cisplatin resistance to breast
cancer cells. Mol Carcinog. 59:512–519. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bhattacharyya A, Ear US, Koller BH,
Weichselbaum RR and Bishop DK: The breast cancer susceptibility
gene BRCA1 is required for subnuclear assembly of Rad51 and
survival following treatment with the DNA cross-linking agent
cisplatin. J Biol Chem. 275:23899–23903. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feng Y, Wang D, Xiong L, Zhen G and Tan J:
Predictive value of RAD51 on the survival and drug responsiveness
of ovarian cancer. Cancer Cell Int. 21:2492021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mattiello L, Soliman Abdel Rehim S,
Musella M, Sistigu A, Guarracino A, Vitale S, Corradi F, Galassi C,
Sperati F, Manic G, et al: The targeting of MRE11 or RAD51
sensitizes colorectal cancer stem cells to CHK1 inhibition. Cancers
(Basel). 13:19572021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Malka MM, Eberle J, Niedermayer K, Zlotos
DP and Wiesmuller L: Dual PARP and RAD51 inhibitory drug conjugates
show synergistic and selective effects on breast cancer cells.
Biomolecules. 11:9812021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maranto C, Udhane V, Hoang DT, Gu L,
Alexeev V, Malas K, Cardenas K, Brody JR, Rodeck U, Bergom C, et
al: STAT5A/B blockade sensitizes prostate cancer to radiation
through inhibition of RAD51 and DNA repair. Clin Cancer Res.
24:1917–1931. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang X, Zhang Q and Guan B: Circ_0110805
knockdown enhances cisplatin sensitivity and inhibits gastric
cancer progression by miR-299-3p/ENDOPDI axis. OncoTargets Ther.
13:11445–11457. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu
TC, Tang JY, Bao YJ, Hu Y, Lin Y, et al: lncRNA GClnc1 promotes
gastric carcinogenesis and may act as a modular scaffold of WDR5
and KAT2A complexes to specify the histone modification pattern.
Cancer Discov. 6:784–801. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L,
Li H, Wang R, Wang Z and Liu S: Circular RNA circ_ASAP2 regulates
drug sensitivity and functional behaviors of cisplatin-resistant
gastric cancer cells by the miR-330-3p/NT5E axis. Anti-Cancer
Drugs. May 19–2021.(Epub ahead of print). doi:
10.1097/CAD.0000000000001087. View Article : Google Scholar
|
28
|
Zhang S, Feng R, Yuan F, Luo Q, Chen X, Li
N and Yang S: The therapeutic effects of dihydroartemisinin on
cisplatin-resistant gastric cancer cells. Curr Pharm Biotechnol.
Feb 16–2021.(Epub ahead of print). doi:
10.2174/1389201022666210217114825. View Article : Google Scholar
|
29
|
Zhuo W, Liu Y, Li S, Guo D, Sun Q, Jin J,
Rao X, Li M, Sun M, Jiang M, et al: Long noncoding RNA GMAN,
Up-regulated in gastric cancer tissues, is associated with
metastasis in patients and promotes translation of ephrin A1 by
competitively binding GMAN-AS. Gastroenterology. 156:676–691.e11.
2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chinnadurai G: The transcriptional
corepressor CtBP: A foe of multiple tumor suppressors. Cancer Res.
69:731–734. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen X, Zhang Q, Dang X, Song T, Wang Y,
Yu Z, Zhang S, Fan J, Cong F, Zhang W and Duan N: Targeting the
CtBP1-FOXM1 transcriptional complex with small molecules to
overcome MDR1-mediated chemoresistance in osteosarcoma cancer stem
cells. J Cancer. 12:482–497. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
He Y, He Z, Lin J, Chen C, Chen Y and Liu
S: CtBP1/2 differentially regulate genomic stability and DNA repair
pathway in high-grade serous ovarian cancer cell. Oncogenesis.
10:492021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Y, Burness ML, Martin-Trevino R, Guy
J, Bai S, Harouaka R, Brooks MD, Shang L, Fox A, Luther TK, et al:
RAD51 mediates resistance of cancer stem cells to PARP inhibition
in triple-negative breast cancer. Clin Cancer Res. 23:514–522.
2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
He WL, Li YH, Hou WJ, Ke ZF, Chen XL, Lu
LY, Cai SR, Song W, Zhang CH and He YL: RAD51 potentiates
synergistic effects of chemotherapy with PCI-24781 and
cis-diamminedichloroplatinum on gastric cancer. World J
Gastroenterol. 20:10094–10107. 2014. View Article : Google Scholar : PubMed/NCBI
|