|
1
|
El Bali M, Bakkach J and Mechita MB: Colorectal cancer: From genetic landscape to targeted therapy. J Oncol. 2021:99181162021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fan J, Shen X, Wang Y, Zhou HL, Liu G, Li YL and Xu ZX: Biomarkers for immune checkpoint therapy targeting programmed death 1 and programmed death ligand 1. Biomed Pharmacother. 130:1106212020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang M, Shen A, Ding J and Geng M: Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol Sci. 35:41–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Troxell ML, Higgins JP and Kambham N: Antineoplastic treatment and renal injury: An update on renal pathology due to cytotoxic and targeted therapies. Adv Anat Pathol. 23:310–329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J and Li W: The application of inorganic nanoparticles in molecular targeted cancer therapy: EGFR targeting. Front Pharmacol. 12:7024452021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Eisenberg-Lerner A, Bialik S, Simon HU and Kimchi A: Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16:966–975. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Blandino G and Strano S: BCL-2: The pendulum of the cell fate. J Exp Clin Cancer Res. 16:3–10. 1997.PubMed/NCBI
|
|
9
|
Sastry KS, Al-Muftah MA, Li P, Al-Kowari MK, Wang E, Chouchane AI, Kizhakayil D, Kulik G, Marincola FM, Haoudi A and Chouchane L: Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 21:1936–1949. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sanjay A, Fu J and Kreibich G: DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J Biol Chem. 273:26094–26099. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S and Nishimoto T: Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol. 13:6367–6374. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bhola PD and Letai A: Mitochondria-judges and executioners of cell death sentences. Mol Cell. 61:695–704. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hsu SY, Kaipia A, Zhu L and Hsueh AJ: Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol Endocrinol. 11:1858–1867. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Danial NN: BAD: Undertaker by night, candyman by day. Oncogene. 27 (Suppl 1):S53–S70. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Polzien L, Baljuls A, Rennefahrt UEE, Fischer A, Schmitz W, Zahedi RP, Sickmann A, Metz R, Albert S, Benz R, et al: Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: Pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem. 284:28004–28020. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang E, Zha J, Jockel J, Boise LH, Thompson CB and Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 80:285–291. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
del Peso L, González-García M, Page C, Herrera R and Nuñez G: Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 278:687–689. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tan Y, Demeter MR, Ruan H and Comb MJ: BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem. 275:25865–25869. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lizcano JM, Morrice N and Cohen P: Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J. 349:547–557. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhou XM, Liu Y, Payne G, Lutz RJ and Chittenden T: Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem. 275:25046–25051. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Radisavljevic Z: AKT as locus of cancer angiogenic robustness and fragility. J Cell Physiol. 228:21–24. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yan J, Xiang J, Lin Y, Ma J, Zhang J, Zhang H, Sun J, Danial NN, Liu J and Lin A: Inactivation of BAD by IKK inhibits TNFα-induced apoptosis independently of NF-κB activation. Cell. 152:304–315. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pandey V, Wang B, Mohan CD, Raquib AR, Rangappa S, Srinivasa V, Fuchs JE, Girish KS, Zhu T, Bender A, et al: Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci USA. 115:E10505–E10514. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang H, Masters SC, Wang H and Fu H: The proapoptotic protein Bad binds the amphipathic groove of 14-3-3zeta. Biochim Biophys Acta. 1547:313–319. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hekman M, Albert S, Galmiche A, Rennefahrt UEE, Fueller J, Fischer A, Puehringer D, Wiese S and Rapp UR: Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem. 281:17321–17336. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM and Yang E: Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J. 22:5459–5470. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Linette GP, Li Y, Roth K and Korsmeyer SJ: Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA. 93:9545–9552. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chattopadhyay A, Chiang CW and Yang E: BAD/BCL-[X(L)] heterodimerization leads to bypass of G0/G1 arrest. Oncogene. 20:4507–4518. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, et al: Functional and physical interaction between Bcl-X(L) and a BH3-like domain in beclin-1. EMBO J. 26:2527–2539. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP, Kutok JL, Le Beau MM, Greenberg ME and Korsmeyer SJ: Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 100:9324–9329. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ and Greenberg ME: Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 3:631–643. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, et al: BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 424:952–956. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Githaka JM, Tripathi N, Kirschenman R, Patel N, Pandya V, Kramer DA, Montpetit R, Zhu LF, Sonenberg N, Fahlman RP, et al: BAD regulates mammary gland morphogenesis by 4E-BP1-mediated control of localized translation in mouse and human models. Nat Commun. 12:29392021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Giménez-Cassina A, Garcia-Haro L, Choi CS, Osundiji MA, Lane EA, Huang H, Yildirim MA, Szlyk B, Fisher JK, Polak K, et al: Regulation of hepatic energy metabolism and gluconeogenesis by BAD. Cell Metab. 19:272–284. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
National Center for Biotechnology Information (NCBI), . BAD BCL2 associated agonist of cell death [Homo sapiens (human)]. NCBI; Bethesda MD: 2021, http://www.ncbi.nlm.nih.gov/gene/572September 2–2021
|
|
37
|
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y and Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 91:231–241. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sastry KS, Karpova Y and Kulik G: Epidermal growth factor protects prostate cancer cells from apoptosis by inducing BAD phosphorylation via redundant signaling pathways. J Biol Chem. 281:27367–27377. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
She QB, Solit DB, Ye Q, O'Reilly KE, Lobo J and Rosen N: The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell. 8:287–297. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Polzien L, Baljuls A, Albrecht M, Hekman M and Rapp UR: BAD contributes to RAF-mediated proliferation and cooperates with B-RAF-V600E in cancer signaling. J Biol Chem. 286:17934–17944. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, Estrov Z, Fridman JS, Bradley EC, Erickson-Viitanen S, et al: Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 363:1117–1127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Winter PS, Sarosiek KA, Lin KH, Meggendorfer M, Schnittger S, Letai A and Wood KC: RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Sci Signal. 7:ra1222014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang N, Zhu J, Liu D, Li YL, Chen BJ, He YQ, Liu K, Mo XM and Li WM: Overexpression of Bcl-2-associated death inhibits A549 cell growth in vitro and in vivo. Cancer Biother Radiopharm. 27:164–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Smith AJ, Karpova Y, D'Agostino R Jr, Willingham M and Kulik G: Expression of the Bcl-2 protein BAD promotes prostate cancer growth. PLoS One. 4:e62242009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Stickles XB, Marchion DC, Bicaku E, Al Sawah E, Abbasi F, Xiong Y, Zgheib NB, Boac BM, Orr BC, Judson PL, et al: BAD-mediated apoptotic pathway is associated with human cancer development. Int J Mol Med. 35:1081–1087. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kulik G: ADRB2-Targeting therapies for prostate cancer. Cancers (Basel). 11:3582019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mann J, Githaka JM, Buckland TW, Yang N, Montpetit R, Patel N, Li L, Baksh S, Godbout R, Lemieux H and Goping IS: Non-canonical BAD activity regulates breast cancer cell and tumor growth via 14-3-3 binding and mitochondrial metabolism. Oncogene. 38:3325–3339. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lu P, Bowman KE, Brown SM, Joklik-Mcleod M, Mause ER, Nguyen HTN and Lim CS: p53-bad: A novel tumor suppressor/proapoptotic factor hybrid directed to the mitochondria for ovarian cancer gene therapy. Mol Pharm. 16:3386–3398. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hu W, Fu J, Lu SX, Liu LL, Luo RZ, Yun JP and Zhang CZ: Decrease of Bcl-xL/Bcl-2-associated death promoter in hepatocellular carcinoma indicates poor prognosis. Am J Cancer Res. 5:1805–1813. 2015.PubMed/NCBI
|
|
52
|
Cekanova M, Fernando RI, Siriwardhana N, Sukhthankar M, Parra C, Woraratphoka J, Malone C, Ström A, Baek SJ, Wade PA, et al: BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Exp Cell Res. 331:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhu X, Yu Y, Hou X, Xu J, Tan Z, Nie X, Ling Z and Ge M: Expression of PIM-1 in salivary gland adenoid cystic carcinoma: Association with tumor progression and patients' prognosis. Oncol Lett. 15:1149–1156. 2018.PubMed/NCBI
|
|
54
|
Yu Y, Zhong Z and Guan Y: The downregulation of Bcl-xL/Bcl-2-associated death promoter indicates worse outcomes in patients with small cell lung carcinoma. Int J Clin Exp Pathol. 8:13075–13082. 2015.PubMed/NCBI
|
|
55
|
Boac BM, Abbasi F, Ismail-Khan R, Xiong Y, Siddique A, Park H, Han M, Saeed-Vafa D, Soliman H, Henry B, et al: Expression of the BAD pathway is a marker of triple-negative status and poor outcome. Sci Rep. 9:174962019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chon HS, Marchion DC, Xiong Y, Chen N, Bicaku E, Stickles XB, Zgheib NB, Judson PL, Hakam A, Gonzalez-Bosquet J, et al: The BCL2 antagonist of cell death pathway influences endometrial cancer cell sensitivity to cisplatin. Gynecol Oncol. 124:119–124. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hayakawa J, Ohmichi M, Kurachi H, Kanda Y, Hisamoto K, Nishio Y, Adachi K, Tasaka K, Kanzaki T and Murata Y: Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res. 60:5988–5994. 2000.PubMed/NCBI
|
|
58
|
Marchion DC, Cottrill HM, Xiong Y, Chen N, Bicaku E, Fulp WJ, Bansal N, Chon HS, Stickles XB, Kamath SG, et al: BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival. Clin Cancer Res. 17:6356–6366. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bansal N, Marchion DC, Bicaku E, Xiong Y, Chen N, Stickles XB, Sawah EA, Wenham RM, Apte SM, Gonzalez-Bosquet J, et al: BCL2 antagonist of cell death kinases, phosphatases, and ovarian cancer sensitivity to cisplatin. J Gynecol Oncol. 23:35–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yu B, Sun X, Shen HY, Gao F, Fan YM and Sun ZJ: Expression of the apoptosis-related genes BCL-2 and BAD in human breast carcinoma and their associated relationship with chemosensitivity. J Exp Clin Cancer Res. 29:1072010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mann J, Yang N, Montpetit R, Kirschenman R, Lemieux H and Goping IS: BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep. 10:3552020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yu N, Seedhouse C, Russell N and Pallis M: Quantitative assessment of the sensitivity of dormant AML cells to the BAD mimetics ABT-199 and ABT-737. Leuk Lymphoma. 59:2447–2453. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yiau SK, Lee C, Tohit ER, Chang KM and Abdullah M: Potential CD34 signaling through phosphorylated-BAD in chemotherapy-resistant acute myeloid leukemia. J Recept Signal Transduct Res. 39:276–282. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou Y, Sun K, Ma Y, Yang H, Zhang Y, Kong X and Wei L: Autophagy inhibits chemotherapy-induced apoptosis through downregulating Bad and Bim in hepatocellular carcinoma cells. Sci Rep. 4:53822014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim H, Choi H and Lee SK: Epstein-barr virus microRNA miR-BART20-5p suppresses lytic induction by inhibiting BAD-mediated caspase-3-dependent apoptosis. J Virol. 90:1359–1368. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S and He S: Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: Suppression by carnosic acid nanoparticle. Int J Nanomedicine. 11:6401–6420. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhao X, Fan Y, Lu C, Li H, Zhou N, Sun G and Fan H: PCAT1 is a poor prognostic factor in endometrial carcinoma and associated with cancer cell proliferation, migration and invasion. Bosn J Basic Med Sci. 19:274–281. 2019.PubMed/NCBI
|
|
68
|
Liu Z, Zhang G, Huang S, Cheng J, Deng T, Lu X, Adeshakin FO, Chen Q and Wan X: Induction of apoptosis in hematological cancer cells by dorsomorphin correlates with BAD upregulation. Biochem Biophys Res Commun. 522:704–708. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mansouri RA and Percival SS: Cranberry extract initiates intrinsic apoptosis in HL-60 cells by increasing BAD activity through inhibition of AKT phosphorylation. BMC Complement Med Ther. 20:712020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Endo H, Inoue I, Masunaka K, Tanaka M and Yano M: Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem. 84:2440–2447. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gao YP, Li L, Yan J, Hou XX, Jia YX, Chang ZW, Guan XY and Qin YR: Down-regulation of CIDEA promoted tumor growth and contributed to cisplatin resistance by regulating the JNK-p21/bad signaling pathways in esophageal squamous cell carcinoma. Front Oncol. 10:6278452020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kelleher DJ and Gilmore R: DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA. 94:4994–4999. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Roboti P and High S: The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation. J Cell Sci. 125:3474–3484. 2012.PubMed/NCBI
|
|
74
|
Apte SS, Mattei MG, Seldin MF and Olsen BR: The highly conserved defender against the death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett. 363:304–306. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
National Center for Biotechnology Information (NCBI), . DAD1, defender against cell death 1 [Homo sapiens (human)]. Gene ID: 1603. NCBI; Bethesda MD: 2021, http://www.ncbi.nlm.nih.gov/gene/1603September 3–2021
|
|
76
|
Zhang Y, Cui C and Lai ZC: The defender against apoptotic cell death 1 gene is required for tissue growth and efficient N-glycosylation in Drosophila melanogaster. Dev Biol. 420:186–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Makishima T, Nakashima T, Nagata-Kuno K, Fukushima K, Iida H, Sakaguchi M, Ikehara Y, Komiyama S and Nishimoto T: The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. Genes Cells. 2:129–141. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L and Coffin JD: Deletion of Dad1 in mice induces an apoptosis-associated embryonic death. Genesis. 26:271–278. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R and Winoto A: Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev Biol. 220:76–84. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hong NA, Kabra NH, Hsieh SN, Cado D and Winoto A: In vivo overexpression of Dad1, the defender against apoptotic death-1, enhances T cell proliferation but does not protect against apoptosis. J Immunol. 163:1888–1893. 1999.PubMed/NCBI
|
|
81
|
Moharikar S, D'Souza JS and Rao BJ: A homologue of the defender against the apoptotic death gene (dad1) in UV-exposed Chlamydomonas cells is downregulated with the onset of programmed cell death. J Biosci. 32:261–270. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mittapalli O and Shukle RH: Molecular characterization and responsive expression of a defender against apoptotic cell death homologue from the Hessian fly, Mayetiola destructor. Comp Biochem Physiol B Biochem Mol Biol. 149:517–523. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu L, Song L, Zhang H, Zhao J, Li C and Xu W: Molecular cloning and responsive expression to injury stimulus of a defender against cell death 1 (DAD1) gene from bay scallops Argopecten irradians. Mol Biol Rep. 35:125–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang MQ, Wang BJ, Liu M, Jiang KY and Wang L: Molecular characterization of a defender against apoptotic cell death 1 gene (CfDAD1) from the mollusk Chlamys farreri. Invertebr Surviv J. 15:294–301. 2018.
|
|
85
|
Makishima T, Yoshimi M, Komiyama S, Hara N and Nishimoto T: A subunit of the mammalian oligosaccharyltransferase, DAD1, interacts with Mcl-1, one of the bcl-2 protein family. J Biochem. 128:399–405. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Paunel-Görgülü A, Kirichevska T, Lögters T, Windolf J and Flohé S: Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol Med. 18:325–335. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhao H, Li Z, Zhu Y, Bian S, Zhang Y, Qin L, Naik AK, He J, Zhang Z, Krangel MS and Hao B: A role of the CTCF binding site at enhancer Eα in the dynamic chromatin organization of the Tcra-Tcrd locus. Nucleic Acids Res. 48:9621–9636. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang Y, Yu M, Dong J, Wu Y and Tian W: Identification of novel Adipokines through proteomic profiling of small extracellular vesicles derived from adipose tissue. J Proteome Res. 19:3130–3142. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tanaka K, Kondoh N, Shuda M, Matsubara O, Imazeki N, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, et al: Enhanced expression of mRNAs of antisecretory factor-1, gp96, DAD1 and CDC34 in human hepatocellular carcinomas. Biochim Biophys Acta. 1536:1–12. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bandres E, Catalan V, Sola I, Honorato B, Cubedo E, Cordeu L, Andion E, Escalada A, Zarate R, Salgado E, et al: Dysregulation of apoptosis is a major mechanism in the lymph node involvement in colorectal carcinoma. Oncol Rep. 12:287–292. 2004.PubMed/NCBI
|
|
91
|
Kulke MH, Freed E, Chiang DY, Philips J, Zahrieh D, Glickman JN and Shivdasani RA: High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer. 47:591–603. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wilson BJ: Meta-analysis of SUMO1. BMC Res Notes. 1:602008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ter-Minassian M, Wang Z, Asomaning K, Wu MC, Liu CY, Paulus JK, Liu G, Bradbury PA, Zhai R, Su L, et al: Genetic associations with sporadic neuroendocrine tumor risk. Carcinogenesis. 32:1216–1222. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhu Y, Xu H, Chen H, Xie J, Shi M, Shen B, Deng X, Liu C, Zhan X and Peng C: Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway. Mol Cell Proteomics. 13:2593–2603. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Schnormeier AK, Pommerenke C, Kaufmann M, Drexler HG and Koeppel M: Genomic deregulation of PRMT5 supports growth and stress tolerance in chronic lymphocytic leukemia. Sci Rep. 10:97752020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ayala GE, Dai H, Ittmann M, Li R, Powell M, Frolov A, Wheeler TM, Thompson TC and Rowley D: Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res. 64:6082–6090. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM, Gelmann E, Datta M, Mostaghel E, et al: A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci USA. 103:10991–10996. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang M, Xiao X, Zeng F, Xie F, Fan Y, Huang C, Jiang G and Wang L: Common and differentially expressed long noncoding RNAs for the characterization of high and low grade bladder cancer. Gene. 592:78–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yoon J, Kim ES, Lee SJ, Park CW, Cha HJ, Hong BH and Choi KY: Apoptosis-related mRNA expression profiles of ovarian cancer cell lines following cisplatin treatment. J Gynecol Oncol. 21:255–261. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bhasin N: DAD1 as potential therapeutic target and biomarker in prostate cancer (unpublished PhD thesis). Tulane University; 2015
|
|
101
|
Al-Bazz YO, Underwood JC, Brown BL and Dobson PR: Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur J Cancer. 45:694–704. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fernando R, Foster JS, Bible A, Ström A, Pestell RG, Rao M, Saxton A, Baek SJ, Yamaguchi K, Donnell R, et al: Breast cancer cell proliferation is inhibited by BAD: Regulation of cyclin D1. J Biol Chem. 282:28864–28873. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Meiliwuerti D: The regulation mechanism study of Bad on Dad1 gene in esophageal squamous cells. MaD ThesisXinjiang Medical University, China2017.(In Chinese).
|
|
104
|
Cell Signaling Technology (CST), . Mitochondrial control of apoptosis. CST; Danvers, MA: 2021, https://www.cellsignal.com/learn-and-support/order-support?countryId=10036#collapse00July 1–2021
|
|
105
|
Cell Signaling Technology (CST), . Regulation of apoptosis. CST; Danvers, MA: 2021, http://www.cellsignal.com/pathways/regulation-of-apoptosis-pathwayJuly 1–2021
|
|
106
|
Cell Signaling Technology (CST), . Inhibition of apoptosis. CST; Danvers, MA: 2021, http://www.cellsignal.com/pathways/inhibition-of-apoptosis-pathwayJuly 1–2021
|
|
107
|
Bui NL, Pandey V, Zhu T, Ma L, Basappa and Lobie PE: Bad phosphorylation as a target of inhibition in oncology. Cancer Lett. 415:177–186. 2018. View Article : Google Scholar : PubMed/NCBI
|