Circular RNA regulates the onset and progression of cancer through the mitogen‑activated protein kinase signaling pathway (Review)
- Authors:
- Qun Lai
- Min Wang
- Chunmei Hu
- Yan Tang
- Yarong Li
- Shuhong Hao
-
Affiliations: Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China, Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China - Published online on: October 5, 2021 https://doi.org/10.3892/ol.2021.13078
- Article Number: 817
-
Copyright: © Lai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hsiao KY, Sun HS and Tsai SJ: Circular RNA-new member of noncoding RNA with novel functions. Exp Biol Med (Maywood). 242:1136–1141. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Lei B, Tian Z, Fan W and Ni B: Circular RNA: A novel biomarker and therapeutic target for human cancers. Int J Med Sci. 16:292–301. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI |
|
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI |
|
Afonina ZA, Myasnikov AG, Shirokov VA, Klaholz BP and Spirin AS: Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: A cryo electron tomography study. Nucleic Acids Res. 42:9461–9469. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Shen T, Han M, Wei G and Ni T: An intriguing RNA species-perspectives of circularized RNA. Protein Cell. 6:871–880. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, et al: Circular RNAs in human cancer. Mol Cancer. 16:252017. View Article : Google Scholar : PubMed/NCBI |
|
Liu J, Liu T, Wang X and He A: Circles reshaping the RNA world: From waste to treasure. Mol Cancer. 16:582017. View Article : Google Scholar : PubMed/NCBI |
|
Bramham CR and Wells DG: Dendritic mRNA: Transport, translation and function. Nat Rev Neurosci. 8:776–789. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z and Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6:e10012332010. View Article : Google Scholar : PubMed/NCBI |
|
Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R and Gorospe M: Circular RNAs in monkey muscle: Age-dependent changes. Aging (Albany NY). 7:903–910. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Xu H, Guo S, Li W and Yu P: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 5:124532015. View Article : Google Scholar : PubMed/NCBI |
|
de Fraipont F, Gazzeri S, Cho WC and Eymin B: Circular RNAs and RNA splice variants as biomarkers for prognosis and therapeutic response in the liquid biopsies of lung cancer patients. Front Genet. 10:3902019. View Article : Google Scholar : PubMed/NCBI |
|
Rao M, Zhu Y, Qi L, Hu F and Gao P: Circular RNA profiling in plasma exosomes from patients with gastric cancer. Oncol Lett. 20:2199–2208. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Shen T, Cheng X, Liu X, Xia C, Zhang H, Pan D, Zhang X and Li Y: Circ_0026344 restrains metastasis of human colorectal cancer cells via miR-183. Artif Cells Nanomed Biotechnol. 47:4038–4045. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Qiu L, Wang T, Ge Q, Xu H, Wu Y, Tang Q and Chen K: Circular RNA signature in hepatocellular carcinoma. J Cancer. 10:3361–3372. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R and Li H: The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 414:301–309. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018. View Article : Google Scholar : PubMed/NCBI |
|
Li Y, Wan B, Liu L, Zhou L and Zeng Q: Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 508:991–996. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Wang Y, Xu R, Zhang D, Lu T, Yu W, Wo Y, Liu A, Sui T, Cui J, Qin Y, et al: Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression. Transl Lung Cancer Res. 8:862–875. 2019. View Article : Google Scholar : PubMed/NCBI |
|
De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16 (Suppl 2):S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Chen T, Xiao Q, Wang X, Wang Z, Hu J, Zhang Z, Gong Z and Chen S: miR-16 regulates proliferation and invasion of lung cancer cells via the ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase 1 (MEK1). J Int Med Res. 47:5194–5204. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Delire B and Stärkel P: The Ras/MAPK pathway and hepatocarcinoma: Pathogenesis and therapeutic implications. Eur J Clin Invest. 45:609–623. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Shaw RJ and Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424–430. 2006. View Article : Google Scholar : PubMed/NCBI |
|
Burotto M, Chiou VL, Lee JM and Kohn EC: The MAPK pathway across different malignancies: A new perspective. Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Fremin C and Meloche S: From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 3:82010. View Article : Google Scholar : PubMed/NCBI |
|
Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh Y: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275:90–94. 1997. View Article : Google Scholar : PubMed/NCBI |
|
Liu RM, Choi J, Wu JH, Gaston Pravia KA, Lewis KM, Brand JD, Mochel NS, Krzywanski DM, Lambeth JD, Hagood JS, et al: Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J Biol Chem. 285:16239–16247. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Robinson KA, Stewart CA, Pye QN, Nguyen X, Kenney L, Salzman S, Floyd RA and Hensley K: Redox-sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture. J Neurosci Res. 55:724–732. 1999. View Article : Google Scholar : PubMed/NCBI |
|
Maurer G, Tarkowski B and Baccarini M: Raf kinases in cancer-roles and therapeutic opportunities. Oncogene. 30:3477–3488. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Ray PD, Huang BW and Tsuji Y: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24:981–990. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y and Li J: Circular RNAs: Regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 7:3106–3117. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, Mao L, Luo CB, Yu SY, Huang XW, et al: Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. 72:906–922. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J. Clin. 68:7–30. 2018. |
|
Bagcchi S: Lung cancer survival only increases by a small amount despite recent treatment advances. Lancet Respir Med. 5:1692017. View Article : Google Scholar : PubMed/NCBI |
|
Jin X, Guan Y, Sheng H and Liu Y: Crosstalk in competing endogenous RNA network reveals the complex molecular mechanism underlying lung cancer. Oncotarget. 8:91270–91280. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Zhang C, Ma L, Niu Y, Wang Z, Xu X, Li Y and Yu Y: Circular RNA in lung cancer research: Biogenesis, functions, and roles. Int J Biol Sci. 16:803–814. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Qiu BQ, Zhang PF, Xiong D, Xu JJ, Long X, Zhu SQ, Ye XD, Wu Y, Pei X, Zhang XM and Wu YB: CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating galectin-1-AKT/ERK1/2 signaling. J Cell Physiol. 234:11256–11264. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Zhang S, Liu J, Yuan T, Liu H, Wan C and Le Y: Circular RNA 0001313 knockdown suppresses non-small cell lung cancer cell proliferation and invasion via the microRNA-452/HMGB3/ERK/MAPK axis. Int J Gen Med. 13:1495–1507. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Hu J, Li H, Wu C, Zhao X and Liu C: The prognostic value of decreased KLF4 in digestive system cancers: A meta-analysis from 17 studies. Dis Markers. 2017:30642462017. View Article : Google Scholar : PubMed/NCBI |
|
Sun C, Li G and Liu M: A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways. Onco Targets Ther. 13:6171–6180. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Llovet JM and Bruix J: Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 48:1312–1327. 2008. View Article : Google Scholar : PubMed/NCBI |
|
Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, Liu Q, Liu Z, Gong Y and Shao C: Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 5:125792015. View Article : Google Scholar : PubMed/NCBI |
|
Zou P, Zhang J, Xia Y, Kanchana K, Guo G, Chen W, Huang Y, Wang Z, Yang S and Liang G: ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget. 6:5860–5876. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, Li L, Ren S, Zhang M and Xu M: CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J Exp Clin Cancer Res. 38:982019. View Article : Google Scholar : PubMed/NCBI |
|
Li W, Zhou X, Wu X, Wei J and Huang Z: The role of circular RNA hsa_circ_0085616 in proliferation and migration of hepatocellular carcinoma cells. Cancer Manag Res. 11:7369–7376. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, Wang W and Hu Q: Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J Cell Physiol. 235:1733–1745. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Ahmad I, Iwata T and Leung HY: Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta. 1823:850–860. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L and Qin W: Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 16:161–169. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Xu Y, Yao Y, Zhong X, Leng K, Qin W, Qu L, Cui Y and Jiang X: Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem Biophys Res Commun. 496:455–461. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Li WH, Song YC, Zhang H, Zhou ZJ, Xie X, Zeng QN, Guo K, Wang T, Xia P and Chang DM: Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers. 2017:45876982017. View Article : Google Scholar : PubMed/NCBI |
|
Sun H, Wang Q, Yuan G, Quan J, Dong D, Lun Y and Sun B: Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR-20a. J Clin Lab Anal. 34:e232352020. View Article : Google Scholar : PubMed/NCBI |
|
Hsiao YC, Yeh MH, Chen YJ, Liu JF, Tang CH and Huang WC: Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget. 6:37965–37978. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y and Goel A: Circular RNA ciRS-7-A circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 23:3918–3928. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Shi Y, Fang N, Li Y, Guo Z, Jiang W, He Y, Ma Z and Chen Y: Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111:2824–2836. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Gao L, Dou ZC, Ren WH, Li SM, Liang X and Zhi KQ: CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK½/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10:7452019. View Article : Google Scholar : PubMed/NCBI |
|
Deng W, Peng W, Wang T, Chen J, Qiu X, Fu L and Zhu S: Microarray profile of circular RNAs identifies hsa_circRNA_102459 and hsa_circRNA_043621 as important regulators in oral squamous cell carcinoma. Oncol Rep. 42:2738–2749. 2019.PubMed/NCBI |
|
Li Z, Chen Z, Hu G and Jiang Y: Roles of circular RNA in breast cancer: Present and future. Am J Transl Res. 11:3945–3954. 2019.PubMed/NCBI |
|
Gao D, Qi X, Zhang X, Fang K, Guo Z and Li L: hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Mol Carcinog. 58:554–564. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Wu F and Zhou J: CircAGFG1 promotes cervical cancer progression via miR-370-3p/RAF1 signaling. BMC Cancer. 19:10672019. View Article : Google Scholar : PubMed/NCBI |
|
Huang P, Qi B, Yao H, Zhang L, Li Y and Li Q: Circular RNA cSMARCA5 regulates the progression of cervical cancer by acting as a microRNA-432 sponge. Mol Med Rep. 21:1217–1223. 2020.PubMed/NCBI |
|
Huang XB, Song KJ, Chen GB, Liu R, Jiang ZF and He YL: Circular RNA hsa_circ_0003204 promotes cervical cancer cell proliferation, migration, and invasion by regulating MAPK pathway. Cancer Biol Ther. 21:972–982. 2020. View Article : Google Scholar : PubMed/NCBI |
|
van Son M, Peters M, Moerland M, Kerkmeijer L, Lagendijk J and van der Voort van Zyp J: Focal salvage treatment of radiorecurrent prostate Cancer: Anarrative review of current strategies and future perspectives. Cancers (Basel). 10:4802018. View Article : Google Scholar : PubMed/NCBI |
|
Yan Z, Xiao Y, Chen Y and Luo G: Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol Res Pract. 216:1527842020. View Article : Google Scholar : PubMed/NCBI |
|
Si-Tu J, Cai Y, Feng T, Yang D, Yuan S, Yang X, He S, Li Z, Wang Y, Tang Y, et al: Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int J Biol Macromol. 122:1235–1243. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Lenis AT, Lec PM, Chamie K and Mshs MD: Bladder cancer: A review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A and Bray F: Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 71:96–108. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Sun M, Zhao W, Chen Z, Li M, Li S, Wu B and Bu R: Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway. Int J Cancer. 145:2170–2181. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Lu HC, Yao JQ, Yang X, Han J, Wang JZ, Xu K, Zhou R, Yu H, Lv Q and Gu M: Identification of a potentially functional circRNA-miRNA-mRNA regulatory network for investigating pathogenesis and providing possible biomarkers of bladder cancer. Cancer Cell Int. 20:312020. View Article : Google Scholar : PubMed/NCBI |
|
Li J, Huang C, Zou Y, Ye J, Yu J and Gui Y: CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer. 19:1032020. View Article : Google Scholar : PubMed/NCBI |
|
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, Wang A, Gan X, Wu Z and Wang L: CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 469:68–77. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, Lin T and Huang J: Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mole-cular Cancer. 17:1612018. View Article : Google Scholar : PubMed/NCBI |
|
Chen T, Yu Q, Shao S and Guo L: Circular RNA circFNDC3B protects renal carcinoma by miR-99a downregulation. J Cell Physiol. 235:4399–4406. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Liu X, Zhou C, Li Y, Deng Y, Lu W and Li J: Upregulation of circ-0000745 in acute lymphoblastic leukemia enhanced cell proliferation by activating ERK pathway. Gene. 751:1447262020. View Article : Google Scholar : PubMed/NCBI |
|
Zhou F, Wang D, Wei W, Chen H, Shi H, Zhou N, Wu L and Peng R: Comprehensive profiling of circular RNA expressions reveals potential diagnostic and prognostic biomarkers in multiple myeloma. BMC Cancer. 20:402020. View Article : Google Scholar : PubMed/NCBI |
|
Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, Que Z and Liu Y: TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 10:522017. View Article : Google Scholar : PubMed/NCBI |
|
Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H and Knop S: The diagnosis and treatment of multiple myeloma. Dtsch Arztebl Int. 113:470–476. 2016.PubMed/NCBI |
|
Brigle K and Rogers B: Pathobiology and diagnosis of multiple myeloma. Semin Oncol Nurs. 33:225–236. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Joshua DE, Bryant C, Dix C, Gibson J and Ho J: Biology and therapy of multiple myeloma. Med J Aust. 210:375–380. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Ring ES, Lawson MA, Snowden JA, Jolley I and Chantry AD: New agents in the treatment of myeloma bone disease. Calcif Tissue Int. 102:196–209. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, et al: Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 25:316–327. 2015. View Article : Google Scholar : PubMed/NCBI |
|
He J, Huang Z, He M, Liao J, Zhang Q, Wang S, Xie L, Ouyang L, Koeffler HP, Yin D and Liu A: Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer. 19:172020. View Article : Google Scholar : PubMed/NCBI |
|
Ko B, He T, Gadgeel S and Halmos B: MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med. 5:42017. View Article : Google Scholar : PubMed/NCBI |
|
Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A, Sigismund S, Ravenda PS, Bonaldi T, Zampino MG, et al: The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med. 22:624–631. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Jeyaraman S, Hanif EAM, Ab Mutalib NS, Jamal R and Abu N: Circular RNAs: Potential regulators of treatment resistance in human cancers. Front Genet. 10:13692020. View Article : Google Scholar : PubMed/NCBI |
|
Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: MEK in cancer and cancer therapy. Pharmacol Ther. 141:160–171. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Li M, Meng F and Lu Q: expression profile screening and bioinformatics analysis of circRNA, LncRNA, and mRNA in acute myeloid leukemia drug-resistant cells. Turk J Haematol. 37:104–110. 2020.PubMed/NCBI |
|
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI |
|
Böhmdorfer G and Wierzbicki AT: Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 25:623–632. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7:124292016. View Article : Google Scholar : PubMed/NCBI |
|
Yaeger R and Corcoran RB: Targeting alterations in the RAF-MEK pathway. Cancer Discov. 9:329–341. 2019. View Article : Google Scholar : PubMed/NCBI |
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, et al: Effects of mutations in Wnt/β-catenin, hedgehog, notch and PI3K pathways on GSK-3 activity-diverse effects on cell growth, metabolism and cancer. Biochim Biophys Acta. 1863:2942–2976. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R and Zou X: Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol. 48:2236–2246. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Guo YH, Wang LQ, Li B, Xu H, Yang JH, Zheng LS, Yu P, Zhou AD, Zhang Y, Xie SJ, et al: Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 7:42513–42526. 2016. View Article : Google Scholar : PubMed/NCBI |