Function of BCLAF1 in human disease (Review)
- Authors:
- Zongdong Yu
- Jie Zhu
- Haibiao Wang
- Hong Li
- Xiaofeng Jin
-
Affiliations: Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China, Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China - Published online on: December 22, 2021 https://doi.org/10.3892/ol.2021.13176
- Article Number: 58
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kasof GM, Goyal L and White E: Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol. 19:4390–4404. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bracken CP, Wall SJ, Barré B, Panov KI, Ajuh PM and Perkins ND: Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res. 68:7621–7628. 2008. View Article : Google Scholar : PubMed/NCBI | |
Savage KI, Gorski JJ, Barros EM, Irwin GW, Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ, McCluggage WG, et al: Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell. 54:445–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vohhodina J, Barros EM, Savage AL, Liberante FG, Manti L, Bankhead P, Cosgrove N, Madden AF, Harkin DP and Savage KI: The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage response through selective mRNA splicing and nuclear export. Nucleic Acids Res. 45:12816–12833. 2017. View Article : Google Scholar : PubMed/NCBI | |
Varia S, Cheedu D, Markey M, Torres-Shafer K, Battini VP, Bubulya A and Bubulya PA: Alignment of Mitotic Chromosomes in Human Cells Involves SR-Like Splicing Factors Btf and TRAP150. Int J Mol Sci. 18:19562017. View Article : Google Scholar : PubMed/NCBI | |
Merz C, Urlaub H, Will CL and Lührmann R: Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA. 13:116–128. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee YY, Yu YB, Gunawardena HP, Xie L and Chen X: BCLAF1 is a radiation-induced H2AX-interacting partner involved in γH2AX-mediated regulation of apoptosis and DNA repair. Cell Death Dis. 3:e3592012. View Article : Google Scholar : PubMed/NCBI | |
Shao AW, Sun H, Geng Y, Peng Q, Wang P, Chen J, Xiong T, Cao R and Tang J: Bclaf1 is an important NF-κB signaling transducer and C/EBPβ regulator in DNA damage-induced senescence. Cell Death Differ. 23:865–875. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Lu ZG, Miki Y and Yoshida K: Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol. 27:8480–8491. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Wang H, Meng F, Han Y, Chen Y, Xiao M, Jiang H, Yu Z and Xu B: Role of BCLAF-1 in PD-L1 stabilization in response to ionizing irradiation. Cancer Sci. 112:4064–4074. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Li J, Sun Z, Duan Y, Wang F, Wei G and Yang JH: Bcl-2-associated transcription factor 1 Ser290 phosphorylation mediates DNA damage response and regulates radiosensitivity in gastric cancer. J Transl Med. 19:3392021. View Article : Google Scholar : PubMed/NCBI | |
McPherson JP, Sarras H, Lemmers B, Tamblyn L, Migon E, Matysiak-Zablocki E, Hakem A, Azami SA, Cardoso R, Fish J, et al: Essential role for Bclaf1 in lung development and immune system function. Cell Death Differ. 16:331–339. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Kalejta RF, Kerry J, Semmes OJ, O'Connor CM, Khan Z, Garcia BA, Shenk T and Murphy E: BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci USA. 109:9575–9580. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Zhang R, Lang Y, Shao A, Xu A, Feng W, Han J, Wang M, He W, Yu C, et al: Bclaf1 critically regulates the type I interferon response and is degraded by alphaherpesvirus US3. PLoS Pathog. 15:e10075592019. View Article : Google Scholar : PubMed/NCBI | |
Ziegelbauer JM, Sullivan CS and Ganem D: Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet. 41:130–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nilsson K, Wu C and Schwartz S: Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation. Int J Mol Sci. 19:17352018. View Article : Google Scholar : PubMed/NCBI | |
Meinke P, Nguyen TD and Wehnert MS: The LINC complex and human disease. Biochem Soc Trans. 39:1693–1697. 2011. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL and Hiraoka Y: Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. Eur J Biochem. 271:1035–1045. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lowe M, Lage J, Paatela E, Munson D, Hostager R, Yuan C, Katoku-Kikyo N, Ruiz-Estevez M, Asakura Y, Staats J, et al: Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b. Cell Rep. 22:2118–2132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li M, Wang Y, Liu J, Zhang M, Fang X, Chen H and Zhang C: A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. Int J Biol Macromol. 121:1308–1313. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lamy L, Ngo VN, Emre NC, Shaffer AL III, Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, et al: Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell. 23:435–449. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y and Fan Y: Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy. Tumour Biol. 37:7371–7381. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang X, Cai B, Li Y, Jiang Y, Fu X, Zhao Y, Gao H, Yang Y, Yang J, et al: The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun. 12:5222021. View Article : Google Scholar : PubMed/NCBI | |
Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD and Fang D: The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. J Biol Chem. 286:16967–16975. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jarboui MA, Wynne K, Elia G, Hall WW and Gautier VW: Proteomic profiling of the human T-cell nucleolus. Mol Immunol. 49:441–452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Philipps D, Celotto AM, Wang QQ, Tarng RS and Graveley BR: Arginine/serine repeats are sufficient to constitute a splicing activation domain. Nucleic Acids Res. 31:6502–6508. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schaal TD and Maniatis T: Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 19:261–273. 1999. View Article : Google Scholar : PubMed/NCBI | |
Smith CW and Valcárcel J: Alternative pre-mRNA splicing: The logic of combinatorial control. Trends Biochem Sci. 25:381–388. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sarras H, Alizadeh Azami S and McPherson JP: In search of a function for BCLAF1. ScientificWorldJournal. 10:1450–1461. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Zhou X, Lu M, He M, Tian Y, Liu L, Wang M, Tan W, Deng Y, Yang X, et al: Bclaf1 promotes angiogenesis by regulating HIF-1α transcription in hepatocellular carcinoma. Oncogene. 38:1845–1859. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mou SJ, Yang PF, Liu YP, Xu N, Jiang WW and Yue WJ: BCLAF1 promotes cell proliferation, invasion and drug-resistance though targeting lncRNA NEAT1 in hepatocellular carcinoma. Life Sci. 242:1171772020. View Article : Google Scholar : PubMed/NCBI | |
Rénert AF, Leprince P, Dieu M, Renaut J, Raes M, Bours V, Chapelle JP, Piette J, Merville MP and Fillet M: The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res. 8:4810–4822. 2009. View Article : Google Scholar : PubMed/NCBI | |
Orieux G, Picault L, Slembrouck A, Roger JE, Guillonneau X, Sahel JA, Saule S, McPherson JP and Goureau O: Involvement of Bcl-2-associated transcription factor 1 in the differentiation of early-born retinal cells. J Neurosci. 34:1530–1541. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q, Han J, Wu G, Fang J and Feng Y: BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat Commun. 5:45812014. View Article : Google Scholar : PubMed/NCBI | |
Li X, He Z, Cheng B, Fang Q, Ma D, Lu T, Wei D, Kuang X, Tang S, Xiong J, et al: Effect of BCLAF1 on HDAC inhibitor LMK-235-mediated apoptosis of diffuse large B cell lymphoma cells and its mechanism. Cancer Biol Ther. 19:825–834. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zhang R, Lu L, Du J, Chen C, Ding K, Wei X, Zhang G, Huang Y and Hou J: lncRNA PVT1 accelerates malignant phenotypes of bladder cancer cells by modulating miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY). 12:22291–22312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Wang X, Dou N, Zhou J, Gao Y and Li Y: B-cell lymphoma-2-associated transcription factor 1 is overexpressed and contributes to sorafenib resistance in hepatocellular carcinoma. Hepatol Res. 49:1329–1340. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dell'Aversana C, Giorgio C, D'Amato L, Lania G, Matarese F, Saeed S, Di Costanzo A, Belsito Petrizzi V, Ingenito C, Martens JHA, et al: miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia. 31:2315–2325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Wen Y, Tian Y, He M, Ke X, Huang Z, He Y, Liu L, Scharf A, Lu M, et al: Heat Shock Protein 90α-Dependent B-Cell-2-Associated Transcription Factor 1 Promotes Hepatocellular Carcinoma Proliferation by Regulating MYC Proto-Oncogene c-MYC mRNA Stability. Hepatology. 69:1564–1581. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wei X, Yuan Y, Sun Q, Zhan J, Zhang J, Tang Y, Li F, Ding L, Ye Q, et al: Src-mediated phosphorylation converts FHL1 from tumor suppressor to tumor promoter. J Cell Biol. 217:1335–1351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Liu B, Wu D and Zhang F: BCLAF1 induces cisplatin resistance in lung cancer cells. Oncol Lett. 20:2272020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhang M, Chen J, Zhao J, Su J and Zhang X: Ginsenoside Compound K Regulates HIF-1α-Mediated Glycolysis Through Bclaf1 to Inhibit the Proliferation of Human Liver Cancer Cells. Front Pharmacol. 11:5833342020. View Article : Google Scholar : PubMed/NCBI | |
Yoshitomi T, Kawakami K, Enokida H, Chiyomaru T, Kagara I, Tatarano S, Yoshino H, Arimura H, Nishiyama K, Seki N, et al: Restoration of miR-517a expression induces cell apoptosis in bladder cancer cell lines. Oncol Rep. 25:1661–1668. 2011.PubMed/NCBI | |
The National Center for Biotechnology Information [OL], BCLAF1 BCL2 associated transcription factor 1 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/9774November 7–2021. | |
Black DL: Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 72:291–336. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wahl MC, Will CL and Lührmann R: The spliceosome: Design principles of a dynamic RNP machine. Cell. 136:701–718. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu JY and Maniatis T: Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. 75:1061–1070. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, Garcia-Blanco MA and Manley JL: Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature. 368:119–124. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ramsay RG and Gonda TJ: MYB function in normal and cancer cells. Nat Rev Cancer. 8:523–534. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shaulian E and Karin M: AP-1 as a regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nerlov C: The C/EBP family of transcription factors: A paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17:318–324. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
LaGory EL and Giaccia AJ: The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Keith B, Johnson RS and Simon MC: HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 12:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shao A, Lang Y, Wang M, Qin C, Kuang Y, Mei Y, Lin D, Zhang S and Tang J: Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1α under hypoxia. Oncogene. 39:2807–2818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Tai Y and Ma J: lncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol Ther. 19:534–542. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao B, Chen X, Wang Z, Xu H and Huang B: Silence of Long Noncoding RNA NEAT1 Inhibits Malignant Biological Behaviors and Chemotherapy Resistance in Gastric Cancer. Pathol Oncol Res. 24:109–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
An J, Lv W and Zhang Y: lncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. OncoTargets Ther. 10:5377–5390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maloney A and Workman P: HSP90 as a new therapeutic target for cancer therapy: The story unfolds. Expert Opin Biol Ther. 2:3–24. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sirvent N, Imbert V, Frelin C, Griessinger E and Peyron JF: Fighting cancer via NF-kappa B inhibition. Arch Pediatr. 10:632–634. 2003.(In French). View Article : Google Scholar : PubMed/NCBI | |
Haefner B: NF-κB: Arresting a major culprit in cancer. Drug Discov Today. 7:653–663. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barkett M and Gilmore TD: Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 18:6910–6924. 1999. View Article : Google Scholar : PubMed/NCBI | |
Karin M, Cao Y, Greten FR and Li Z-W: NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI | |
Karin M and Lin A: NF-kappaB at the crossroads of life and death. Nat Immunol. 3:221–227. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wilson GK, Tennant DA and McKeating JA: Hypoxia inducible factors in liver disease and hepatocellular carcinoma: Current understanding and future directions. J Hepatol. 61:1397–1406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim DY, Yuan HD, Chung IK and Chung SH: Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J Agric Food Chem. 57:1532–1537. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Li Z, Wang W, Zeng Y, Liu Z and Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333:213–221. 2013. View Article : Google Scholar : PubMed/NCBI | |
Varier RA and Timmers HT: Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta. 1815:75–89. 2011.PubMed/NCBI | |
Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, Nwosu ZC, Zhang L, Czerwonka A, Pawłowska A, et al: Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 585:277–282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo XG, Zhang CL, Zhao WW, Liu ZP, Liu L, Mu A, Guo S, Wang N, Zhou H and Zhang TC: Histone methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells. Cancer Lett. 344:129–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G and Caretti G: SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res. 47:1278–1293. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI | |
da Costa JB, Gibb EA, Nykopp TK, Mannas M, Wyatt AW and Black PC: Molecular tumor heterogeneity in muscle invasive bladder cancer: Biomarkers, subtypes, and implications for therapy. Urol Oncol. 2018:S1078-1439(18)30463-0. 2018. | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burma S, Chen BP and Chen DJ: Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst). 5:1042–1048. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Gao F, Wang T, Flagg T and Deng X: A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair. Neoplasia. 11:1012–1021. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Owonikoko TK, Sun SY, Ramalingam SS, Doetsch PW, Xiao ZQ, Khuri FR, Curran WJ and Deng X: c-Myc suppression of DNA double-strand break repair. Neoplasia. 14:1190–1202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niu C, Liang C, Guo J, Cheng L, Zhang H, Qin X, Zhang Q, Ding L, Yuan B, Xu X, et al: Downregulation and growth inhibitory role of FHL1 in lung cancer. Int J Cancer. 130:2549–2556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Wang Z, Yan J, Yang X, Liu A, Qiu W, Zhu J, Han J, Zhang H, Lin J, et al: Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway. J Clin Invest. 119:349–361. 2009.PubMed/NCBI | |
Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J, Sun H, Huang K, Yang W, Li X, et al: FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. J Cell Mol Med. 15:72–85. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, Wu J, Chang S, Yan Z, Lv Z, et al: A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 8:140592017. View Article : Google Scholar : PubMed/NCBI | |
Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C and Ferry D: Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 44:42–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Perše M and Večerić-Haler Ž: Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics and Challenges. BioMed Res Int. 2018:14628022018. View Article : Google Scholar : PubMed/NCBI | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Ning Z, Lu C, Gao W, Liang J, Yan Q, Tan G and Liu J: USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis. Front Pharmacol. 8:2742017. View Article : Google Scholar : PubMed/NCBI | |
Park CH, Eun CS and Han DS: Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest Res. 16:338–345. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kulik L and El-Serag HB: Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 156:477–491.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burns JS and Manda G: Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci. 18:27552017. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Chen X, Sun X, Wang L and Chen S: The Glycolytic Switch in Tumors: How Many Players Are Involved? J Cancer. 8:3430–3440. 2017. View Article : Google Scholar : PubMed/NCBI | |
Turesson I, Bjorkholm M, Blimark CH, Kristinsson S, Velez R and Landgren O: Rapidly changing myeloma epidemiology in the general population: Increased incidence, older patients, and longer survival. Eur J Haematol. 101:237–244. 2018. View Article : Google Scholar | |
Wang J, Chun HJ, Wong W, Spencer DM and Lenardo MJ: Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA. 98:13884–13888. 2001. View Article : Google Scholar : PubMed/NCBI | |
Horn S, Hughes MA, Schilling R, Sticht C, Tenev T, Ploesser M, Meier P, Sprick MR, MacFarlane M and Leverkus M: Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival. Cell Rep. 19:785–797. 2017. View Article : Google Scholar : PubMed/NCBI | |
Caimi PF, Hill BT, Hsi ED and Smith MR: Clinical approach to diffuse large B cell lymphoma. Blood Rev. 30:477–491. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mensah AA, Kwee I, Gaudio E, Rinaldi A, Ponzoni M, Cascione L, Fossati G, Stathis A, Zucca E, Caprini G, et al: Novel HDAC inhibitors exhibit pre-clinical efficacy in lymphoma models and point to the importance of CDKN1A expression levels in mediating their anti-tumor response. Oncotarget. 6:5059–5071. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ganai SA: Histone deacetylase inhibitor givinostat: The small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother. 28:247–254. 2016. View Article : Google Scholar : PubMed/NCBI | |
Adams CM, Hiebert SW and Eischen CM: Myc Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in Hematologic Malignancies. Cancer Res. 76:736–748. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU and Kurz T: Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem. 56:427–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Culp-Hill R, D'Alessandro A and Pietras EM: Extinguishing the Embers: Targeting AML Metabolism. Trends Mol Med. 27:332–344. 2021. View Article : Google Scholar : PubMed/NCBI | |
Safi S, Beckhove P, Warth A, Benner A, Roeder F, Rieken S, Debus J, Dienemann H, Hoffmann H and Huber PE: A randomized phase II study of radiation induced immune boost in operable non-small cell lung cancer (RadImmune trial). BMC Cancer. 15:9882015. View Article : Google Scholar : PubMed/NCBI | |
Baidoo KE, Yong K and Brechbiel MW: Molecular pathways: Targeted α-particle radiation therapy. Clin Cancer Res. 19:530–537. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH and Sharpe AH: Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 203:883–895. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schreiner B, Bailey SL, Shin T, Chen L and Miller SD: PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol. 38:2706–2717. 2008. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al PACIFIC Investigators, : Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, Garon EB and Lee P: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18:895–903. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM and Moore PS: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 266:1865–1869. 1994. View Article : Google Scholar : PubMed/NCBI | |
1Gao SJ, Kingsley L, Hoover DR, Spira TJ, Rinaldo CR, Saah A, Phair J, Detels R, Parry P, Chang Y, et al: Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N Engl J Med. 335:233–241. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cesarman E, Chang Y, Moore PS, Said JW and Knowles DM: Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 332:1186–1191. 1995. View Article : Google Scholar : PubMed/NCBI | |
Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d'Agay MF, Clauvel JP, Raphael M, Degos L, et al: Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood. 86:1276–1280. 1995. View Article : Google Scholar : PubMed/NCBI | |
Boshoff C and Weiss R: AIDS-related malignancies. Nat Rev Cancer. 2:373–382. 2002. View Article : Google Scholar : PubMed/NCBI | |
Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Biolatti M, Salinger AJ, Mondal S, Thompson PR, Weerapana E, Lebbink RJ, et al: Human cytomegalovirus-induced host protein citrullination is crucial for viral replication. Nat Commun. 12:39102021. View Article : Google Scholar : PubMed/NCBI | |
Halenius A and Hengel H: Human cytomegalovirus and autoimmune disease. BioMed Res Int. 2014:4729782014. View Article : Google Scholar : PubMed/NCBI | |
Herbein G: The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses. 10:4082018. View Article : Google Scholar : PubMed/NCBI | |
Sadler AJ and Williams BR: Interferon-inducible antiviral effectors. Nat Rev Immunol. 8:559–568. 2008. View Article : Google Scholar : PubMed/NCBI | |
zur Hausen H: Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer. 2:342–350. 2002. View Article : Google Scholar : PubMed/NCBI | |
You J, Srinivasan V, Denis GV, Harrington WJ Jr, Ballestas ME, Kaye KM and Howley PM: Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J Virol. 80:8909–8919. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eltzschig HK and Eckle T: Ischemia and reperfusion–from mechanism to translation. Nat Med. 17:1391–1401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/Reperfusion. Compr Physiol. 7:113–170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diella F, Cameron S, Gemünd C, Linding R, Via A, Kuster B, Sicheritz-Pontén T, Blom N and Gibson TJ: Phospho. ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics. 5:792004. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI |