The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review)
- Authors:
- Cristian G. Gonzalez
- Shivani Akula
- Marieke Burleson
-
Affiliations: Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA, Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA - Published online on: January 10, 2022 https://doi.org/10.3892/ol.2022.13194
- Article Number: 74
-
Copyright: © Gonzalez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Allen BL and Taatjes DJ: The mediator complex: A central integrator of transcription. Nat Rev Mol Cell Biol. 16:155–166. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kornberg RD: Mediator and the mechanism of transcriptional activation. Trends Biochem Sci. 30:235–239. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mo X, Kowenz-Leutz E, Xu H and Leutz A: Ras induces mediator complex exchange on C/EBP beta. Mol Cell. 13:241–250. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P and Reinberg D: PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell. 18:83–96. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bernecky C, Grob P, Ebmeier CC, Nogales E and Taatjes DJ: Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol. 9:e10006032011. View Article : Google Scholar : PubMed/NCBI | |
Elmlund H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJ, Holmberg S, Hebert H and Gustafsson CM: The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci USA. 103:15788–15793. 2006. View Article : Google Scholar : PubMed/NCBI | |
Knuesel MT, Meyer KD, Bernecky C and Taatjes DJ: The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23:439–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Mäkinen N, Gao F, Palin K, Nurkkala H, et al: Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep. 7:654–660. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J and Cai G: Redefining the modular organization of the core Mediator complex. Cell Res. 24:796–808. 2014. View Article : Google Scholar : PubMed/NCBI | |
Knuesel MT, Meyer KD, Donner AJ, Espinosa JM and Taatjes DJ: The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol. 29:650–661. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu W and Ji JY: Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genetics. 38:439–452. 2011.PubMed/NCBI | |
Klatt F, Leitner A, Kim IV, Ho-Xuan H, Schneider EV, Langhammer F, Weinmann R, Müller MR, Huber R, Meister G and Kuhn CD: A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proc Natl Acad Sci USA. 117:2894–2905. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, et al: Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci Adv. 7:eabd44842021. View Article : Google Scholar : PubMed/NCBI | |
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES and Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 95:717–728. 1998. View Article : Google Scholar : PubMed/NCBI | |
Clark AD, Oldenbroek M and Boyer TG: Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol. 50:393–426. 2015.PubMed/NCBI | |
Ajabnoor GMA, Mohammed NA, Banaganapalli B, Abdullah LS, Bondagji ON, Mansouri N, Sahly NN, Vaidyanathan V, Bondagji N, Elango R and Shaik NA: Expanded somatic mutation spectrum of MED12 gene in uterine leiomyomas of Saudi Arabian Women. Front Genet. 9:5522018. View Article : Google Scholar : PubMed/NCBI | |
Banaganapalli B, Mohammed K, Khan IA, Al-Aama JY, Elango R and Shaik NA: A Computational protein phenotype prediction approach to analyze the deleterious mutations of human MED12 gene. J Cell Biochem. 117:2023–2035. 2016. View Article : Google Scholar : PubMed/NCBI | |
Croce S and Chibon F: MED12 and uterine smooth muscle oncogenesis: State of the art and perspectives. Eur J Cancer. 51:1603–1610. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Graaff MA, Cleton-Jansen AM, Szuhai K and Bovée JV: Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 44:1597–1604. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heinonen HR, Sarvilinna NS, Sjöberg J, Kämpjärvi K, Pitkänen E, Vahteristo P, Mäkinen N and Aaltonen LA: MED12 mutation frequency in unselected sporadic uterine leiomyomas. Fertil Steril. 102:1137–1142. 2014. View Article : Google Scholar : PubMed/NCBI | |
Je EM, Kim MR, Min KO, Yoo NJ and Lee SH: Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 131:E1044–E1047. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kämpjärvi K, Mäkinen N, Kilpivaara O, Arola J, Heinonen HR, Böhm J, Abdel-Wahab O, Lehtonen HJ, Pelttari LM, Mehine M, et al: Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 107:1761–1765. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, Liu L, Wang H, King B, Shaik S, et al: Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 16:1080–1091. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mäkinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM and Aaltonen LA: MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2:966–969. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mäkinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M, et al: MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 334:252–255. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mäkinen N, Vahteristo P, Kämpjärvi K, Arola J, Bützow R and Aaltonen LA: MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 21:1300–1303. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, Tsuda H and Kanai Y: Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 62:657–661. 2013. View Article : Google Scholar : PubMed/NCBI | |
McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U and Rajkovic A: Whole exome sequencing in a Random Sample of North American Women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 7:e332512012. View Article : Google Scholar : PubMed/NCBI | |
Mehine M, Kaasinen E, Mäkinen N, Katainen R, Kämpjärvi K, Pitkänen E, Heinonen HR, Bützow R, Kilpivaara O, Kuosmanen A, et al: Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 369:43–53. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pérot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, Coindre JM, Stoeckle E, Floquet A, MacGrogan G and Chibon F: MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 7:e400152012. View Article : Google Scholar : PubMed/NCBI | |
Ravegnini G, Mariño-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, Nucci MR, George S, Angelini S, Raut CP and Fletcher JA: MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 26:743–749. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwetye KE, Pfeifer JD and Duncavage EJ: MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 45:65–70. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Shen Q, Ye LH and Ye J: MED12 mutations in human diseases. Protein Cell. 4:643–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Hu S, Xin F, Zhao H, Li G, Ran W, Xing X and Wang J: MED12 exon 2 mutation is uncommon in intravenous leiomyomatosis: Clinicopathologic features and molecular study. Hum Pathol. 99:36–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Ubago J, Li L, Guo H, Liu Y, Qiang W, Kim JJ, Kong B and Wei JJ: Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer. 120:3165–3177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE, et al: Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem. 293:4870–4882. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kämpjärvi K, Järvinen TM, Heikkinen T, Ruppert AS, Senter L, Hoag KW, Dufva O, Kontro M, Rassenti L, Hertlein E, et al: Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget. 6:1884–1888. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lim WK, Ong CK, Tan J, Thike AA, Ng CC, Rajasegaran V, Myint SS, Nagarajan S, Nasir ND, McPherson JR, et al: Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 46:877–880. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshida M, Sekine S, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T and Ochiai A: Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer. 112:1703–1708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kishi T, Ikeda A, Koyama N, Fukada J and Nagao R: A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci USA. 105:14497–14502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen M, Chang BD, Puzyrev AT, Lim CU, Rokow-Kittell R, et al: Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci USA. 109:13799–13804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, Jin G, Rezaeian AH, Han F, Wang J, et al: Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 6:66412015. View Article : Google Scholar : PubMed/NCBI | |
Ng CC, Tan J, Ong CK, Lim WK, Rajasegaran V, Nasir ND, Lim JC, Thike AA, Salahuddin SA, Iqbal J, et al: MED12 is frequently mutated in breast phyllodes tumours: A study of 112 cases. J Clin Pathol. 68:685–691. 2015. View Article : Google Scholar : PubMed/NCBI | |
Darooei M, Khan F, Rehan M, Zubeda S, Jeyashanker E, Annapurna S, Shah A, Maddali S and Hasan Q: MED12 somatic mutations encompassing exon 2 associated with benign breast fibroadenomas and not breast carcinoma in Indian women. J Cell Biochem. 120:182–191. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, et al: MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell. 151:937–950. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Słabicki M, Sellner L, Dietrich S, Liu X, Jethwa A, Hüllein J, Walther T, Wagner L, Huang Z, et al: MED12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br J Haematol. 179:421–429. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bullerdiek J and Rommel B: Factors targeting MED12 to drive tumorigenesis? F1000Res. 7:3592018. View Article : Google Scholar : PubMed/NCBI | |
Guièze R, Robbe P, Clifford R, de Guibert S, Pereira B, Timbs A, Dilhuydy MS, Cabes M, Ysebaert L, Burns A, et al: Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 126:2110–2117. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aster JC, Pear WS and Blacklow SC: The varied roles of notch in cancer. Annu Rev Pathol. 12:245–275. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meurette O and Mehlen P: Notch signaling in the tumor microenvironment. Cancer Cell. 34:536–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I and Marconi P: Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 113:856–865. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lupien M and Brown M: Cistromics of hormone-dependent cancer. Endocr Relat Cancer. 16:381–389. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaikhibrahim Z, Offermann A, Braun M, Menon R, Syring I, Nowak M, Halbach R, Vogel W, Ruiz C, Zellweger T, et al: MED12 overexpression is a frequent event in castration-resistant prostate cancer. Endocr Relat Cancer. 21:663–675. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Risheg H, Graham JM Jr, Clark RD, Rogers RC, Opitz JM, Moeschler JB, Peiffer AP, May M, Joseph SM, Jones JR, et al: A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet. 39:451–453. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schwartz CE, Tarpey PS, Lubs HA, Verloes A, May MM, Risheg H, Friez MJ, Futreal PA, Edkins S, Teague J, et al: The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J Med Genet. 44:472–477. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vulto-van Silfhout AT, de Vries BB, van Bon BW, Hoischen A, Ruiterkamp-Versteeg M, Gilissen C, Gao F, van Zwam M, Harteveld CL, van Essen AJ, et al: Mutations in MED12 cause X-linked Ohdo syndrome. Am J Hum Genet. 92:401–406. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Carkner R and Buttyan R: The hedgehog/Gli signaling paradigm in prostate cancer. Expert Rev Endocrinol Metab. 6:453–467. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Kim S, Ishii S and Boyer TG: Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol. 26:8667–8682. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Spaeth JM, Kim NH, Xu X, Friez MJ, Schwartz CE and Boyer TG: MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling. Proc Natl Acad Sci USA. 109:19763–19768. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, et al: Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 486:405–409. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chao X, Tan W, Tsang JY, Tse GM, Hu J, Li P, Hou J, Li M, He J and Sun P: Clinicopathologic and genetic features of metaplastic breast cancer with osseous differentiation: A series of 6 cases. Breast Cancer. 28:1100–1111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shi X, Zhang J, Chen X, Zhang P, Liu A and Zhu T: A comprehensive analysis of somatic alterations in Chinese ovarian cancer patients. Sci Rep. 11:3872021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Liu F, Halfmann P, Behrens RT, Liu P, McIlwain SJ, Ong IM, Donahue K, Wang Y, Kawaoka Y, et al: Mediator complex subunit 12 is a gatekeeper of SARS-CoV-2 infection in breast cancer cells. Genes Dis. Aug 17–2021.doi: 10.1016/j.gendis.2021.08.001 (Epub ahead of print). | |
Zhang S, O'Regan R and Xu W: The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer. 126:939–948. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zeng H, Wang Q, Zhao Z, Boyer TG, Bian X and Xu W: MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. Sci Adv. 1:e15004632015. View Article : Google Scholar : PubMed/NCBI | |
Peng BL, Li WJ, Ding JC, He YH, Ran T, Xie BL, Wang ZR, Shen HF, Xiao RQ, Gao WW, et al: A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Theranostics. 10:3451–3473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schleicher EM, Dhoonmoon A, Jackson LM, Clements KE, Stump CL, Nicolae CM and Moldovan GL: Dual genome-wide CRISPR knockout and CRISPR activation screens identify mechanisms that regulate the resistance to multiple ATR inhibitors. PLoS Genet. 16:e10091762020. View Article : Google Scholar : PubMed/NCBI | |
Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM and Pollard JR: Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 7:428–430. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt HC, Aslanian AS, Lees JA and Yaffe MB: p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 11:175–189. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vendetti FP, Lau A, Schamus S, Conrads TP, O'Connor MJ and Bakkenist CJ: The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget. 6:44289–44305. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo XL, Deng CC, Su XD, Wang F, Chen Z, Wu XP, Liang SB, Liu JH and Fu LW: Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Res. 78:3532–3543. 2018.PubMed/NCBI | |
Srivastava S and Kulshreshtha R: Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol. 236:3163–3177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rosell R, Bivona TG and Karachaliou N: Genetics and biomarkers in personalisation of lung cancer treatment. Lancet. 382:720–731. 2013. View Article : Google Scholar : PubMed/NCBI | |
Broude EV, Győrffy B, Chumanevich AA, Chen M, McDermott MS, Shtutman M, Catroppo JF and Roninson IB: Expression of CDK8 and CDK8-interacting Genes as potential biomarkers in breast cancer. Curr Cancer Drug Targets. 15:739–749. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Chen X, Shen XB, Sheng LQ and Liu XH: Binding patterns and structure-activity relationship of CDK8 inhibitors. Bioorg Chem. 96:1036242020. View Article : Google Scholar : PubMed/NCBI |