Role and mechanism of action of LAPTM4B in EGFR‑mediated autophagy (Review)
- Authors:
- Xiaokun Ji
- Hua Ma
- Yun Du
-
Affiliations: Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China - Published online on: February 7, 2022 https://doi.org/10.3892/ol.2022.13229
- Article Number: 109
This article is mentioned in:
Abstract
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, Adachi H, Adams CM, Adams PD, Adeli K, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Henson ES and Gibson SB: Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: Implications for cancer therapy. Cell Signal. 18:2089–2097. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jutten B and Rouschop KMA: EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle. 13:42–51. 2014. View Article : Google Scholar : PubMed/NCBI | |
Henson E, Chen Y and Gibson S: EGFR family members' regulation of autophagy is at a crossroads of cell survival and death in cancer. Cancers (Basel). 9:272017. View Article : Google Scholar : PubMed/NCBI | |
Sigismund S, Avanzato D and Lanzetti L: Emerging functions of the EGFR in cancer. Mol Oncol. 12:3–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mendelsohn X and Baselga J: Epidermal growth factor receptor targeting in cancer. Semin Oncol. 33:369–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye KJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Majem M and Remon J: Tumor heterogeneity: Evolution through space and time in EGFR mutant non small cell lung cancer patients. Transl Lung Cancer Res. 2:226–237. 2013.PubMed/NCBI | |
Feng Y, Gao S, Gao Y, Wang X and Chen Z: Anti-EGFR antibody sensitizes colorectal cancer stem-like cells to Fluorouracil-induced apoptosis by affecting autophagy. Oncotarget. 7:81402–81409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X, et al: EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One. 6:e186912011. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et al: EGFR-mediated phosphorylation of beclin 1 in autophagy suppression, tumor progression and tumor chemoresistance. Cell. 154:1269–1284. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu XR, Zhou RL, Zhang QY, Zhang Y, Jin YY, Lin M, Rui JA and Ye DX: Structure analysis and expressions of a novel tetratransmembrane protein, lysosoma-associated protein transmembrane 4 beta associated with hepatocellular carcinoma. World J Gastroenterol. 10:1555–1559. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tooze SA and Yoshimori T: The origin of the autophagosomal membrane. Nat Cell Biol. 12:831–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Thapa N, Sun Y and Anderson RA: A kinase independent role for EGF receptor in autophagy initiation. Cell. 160:145–160. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wu H, Zhang S, Lu J, Lu Y, Zhan P, Fang Q, Wang F, Zhang X, Xie C and Yin Z: LAPTM4B facilitates tumor growth and induces autophagy in hepatocellular carcinoma. Cancer Manag Res. 11:2485–2497. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang Q, Tian R, Wang Q, Zhao JJ, Iglehart JD, Wang ZC and Richardson AL: Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Res. 71:7481–7489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Wang L, Chen D, Chang Y, Zhang M, XU JJ, Zhou R and Zhang QY: LAPTM4B: An oncogene in various solid tumors and its functions. Oncogene. 35:6359–6365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang QY and Zhou RL: Relationship between LAPTM4B gene polymorphism and susceptibility of primary liver cancer. Ann Oncol. 23:1864–1869. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Xu JJ, Zhou R and Zhang QY: Association of LAPTM4B gene polymorphism with nasopharyngeal carcinoma susceptibility in a Chinese population. Med Oncol. 30:4702013. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Tian H, Yue W, Li L, Li S, Gao C, Si L, Qi L, Lu M and Hu W: LAPTM4B polymorphism is associated with nonsmall cell lung cancer susceptibility and prognosis. Oncol Rep. 31:2454–2460. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shaker O, Taha F, Salah M and El-Marzouky M: LAPTM4B gene expression and polymorphism as diagnostic markers of breast cancer in Egyptian patients. J Med Biochem. 34:393–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xia LZ, Yin ZH, Ren YW, Shen L, Wu W, Li XL, Guan P and Zhou BS: The relationship between LAPTM4B polymorphisms and cancer risk in Chinese Han population: A meta-analysis. Springerplus. 4:1792015. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Xiong F, Wei X, Yang Y, McNutt MA and Zhou RL: Overexpression of LAPTM4B-35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett. 294:236–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xiong F, Wei X, Yang H and Zhou R: LAPTM4B-35, a novel tetratransmembrane protein and its PPRP motif serve critical roles in proliferation and metastatic potential of hepatocellular carcinoma cells. Cancer Sci. 100:2335–2340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei XH, Pan YP, Li HC, Yang H, He QH, Pang Y, Shan Y, Xiong FX, Shao GZ and Zhou RL: LAPTM4B: A novel cancer-associated gene motivates multidrug resistance through efflux and activating PI3K/AKT signaling. Oncogene. 29:5785–5795. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, Desmedt C, Sotiriou C, Szallasi Z, Iglehart JD, et al: Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med. 6:214–218. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, He XD, Yu JC, Zhou RL, Yang H, Qu Q and Rui JA: Overexpression of LAPTM4B promotes growth of gallbladder carcinoma cells in vitro. Am J Surg. 199:515–521. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, He XD, Cui QC, Zhou WX, Qu Q, Zhou RL, Rui JA and Yu JC: Expression of LAPTM4B-35: A novel marker of progression, invasiveness and poor prognosis of extrahepatic cholangiocarcinoma. Cancer Lett. 264:209–217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Liu Y, Zhou R, Meng F, Gao Y, Yang S, Li X, Yang M and Lou G: LAPTM4B polymorphisms is associated with ovarian cancer susceptibility and its prognosis. Jpn J Clin Oncol. 42:413–419. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang H, McNutt MA, Xiong F, Xiu N, Li L and Zhou R: LAPTM4B overexpression is an independent prognostic marker in ovarian carcinoma. Oncol Rep. 20:1077–1083. 2008.PubMed/NCBI | |
Zhang H, Tian B, Yu H, Yao H and Gao Z: LAPTM4B-35 protein as a potential therapeutic target in gastric cancer. Tumour Biol. 35:12737–12742. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng XJ, Xu W, Zhang QY and Zhou RL: Relationship between LAPTM4B gene polymorphism and susceptibility of colorectal and esophageal cancers. Ann Oncol. 19:527–532. 2008. View Article : Google Scholar : PubMed/NCBI | |
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST and Anwer F: Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol. 17:193–208. 2021. View Article : Google Scholar : PubMed/NCBI | |
Scarlatti F, Granata R, Meijer AJ and Codogno P: Does autophagy have a license to kill mammalian cells? Cell Death Differ. 16:12–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg-Lerner A, Bialik S, Simon HU and Kimchi A: Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16:966–975. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, Vernon P, Cao L and Tang D: HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Chen D, Huang J, Wang R, Feng B, Song H and Chen L: HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma. Mol Cancer. 13:1652014. View Article : Google Scholar : PubMed/NCBI | |
Tao H, Chen F, Liu H, Hu Y, Wang Y and Li H: Wnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating beclin1-mediated autophagy in the MG63 human osteosarcoma cell line. Mol Med Rep. 16:1701–1706. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ying H, Qu D, Liu C, Ying T, Lv J, Jin S and Xu H: Chemoresistance is associated with Beclin-1 and PTEN expression in epithelial ovarian cancers. Oncol Lett. 9:1759–1763. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhao L, Ju Y, Li W, Zhang M, Jiao Y, Zhang J, Wang S, Wang Y, Zhao M, et al: A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis. 5:e13612014. View Article : Google Scholar : PubMed/NCBI | |
Eum KH and Lee M: Targeting the autophagy pathway using ectopic expression of beclin 1 in combination with rapamycin in drug-resistant v-Ha-ras-transformed NIH 3T3 cells. Mol Cells. 31:231–238. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu MY, Fu J, Xu J, O'Malley BW and Wu RC: Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell Res. 22:1003–1021. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pietrocola F, Pol J, Vacchelli E, Baracco EE, Levesque S, Castoldi F, Maiuri MC, Madeo F and Kroemer G: Autophagy induction for the treatment of cancer. Autophagy. 12:1962–1964. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chude CI and Amaravadi RK: Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int J Mol Sci. 18:12792017. View Article : Google Scholar : PubMed/NCBI | |
Pellegrini P, Strambi A, Zipoli C, Hägg-Olofsson M, Buoncervello M, Linder S and Milito AD: Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: Implications for cancer therapies. Autophagy. 10:562–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fung C, Chen X, Grandis JR and Duvvuri U: EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol Ther. 13:1417–1424. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gorzalczany Y, Gilad Y, Amihai D, Hammel I, Sagi-Eisenberg R and Merimsky O: Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: A beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310:207–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Chen Y, Song H, Xu Y, Wang R and Chen L: Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A. Oncotarget. 6:317–331. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, Liu C, Jin H, Wang Y, Jiang G, et al: ATG7 overexpression is crucial for tumorigenic growth of bladder cancer in vitro and in vivo by targeting the ETS2/miRNA196b/FOXO1/p27 axis. Mol Ther Nucleic Acids. 7:299–313. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang L, Zhou H, Wang W, Luo Y, Yang H and Yi H: Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and beclin 1 in A549 human lung cancer cells. Mol Med Rep. 17:6859–6865. 2018.PubMed/NCBI | |
Wu J, Li W, Ning J, Yu W, Rao T and Cheng F: Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther. 12:495–508. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Cai L, Lu J, Wang CD, Guan J, Chen X, Wu J, Zheng W, Wu Z, Li Q and Su Z: MicroRNA-93 mediates cabergoline-resistance by targeting ATG7 in prolactinoma. J Endocrinol. Sep 1–2018.(Epub ahead of print). | |
Lemmon MA and Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010. View Article : Google Scholar : PubMed/NCBI | |
Botti J, Djavaheri-Mergny M, Pilatte Y and Codogno P: Autophagy signaling and the cogwheels of cancer. Autophagy. 2:67–73. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi YH, Hwang SG, Yoon G and Lee SJ: Involvement of autophagy in oncogenic K-ras-induced malignant cell transformation. J Biol Chem. 286:12924–12932. 2011. View Article : Google Scholar : PubMed/NCBI | |
Elgendy M, Sheridan C, Brumatti G and Martin SJ: Oncogenic ras-induced expression of noxa and beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell. 42:23–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG and Zhu YP: Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed Environ Sci. 26:902–911. 2013.PubMed/NCBI | |
Alers S, Löffler AS, Wesselborg S and Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32:2–11. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmukler E, Kloog Y and Pinkas-Kramarski R: Ras and autophagy in cancer development and therapy. Oncotarget. 5:577–586. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS and Kim DH: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell. 57:207–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu SY, Lan SH, Cheng DE, Chen WK, Shen CH, Lee YR, Zuchini R and Liu HS: Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia. 13:1171–1182. 2011. View Article : Google Scholar : PubMed/NCBI | |
Byun JY, Yoon CH, An S, Park IC, Kang CM, Kim MJ and Lee SJ: The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic ras. Carcinogenesis. 30:1880–1888. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Lin J, Su J, Chen X, Jiang P and Huang K: Glutamine deficiency promotes PCV2 infection through induction of autophagy via activation of ROS-mediated JAK2/STAT3 signaling pathway. J Agric Food Chem. 66:11757–11766. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quesnelle KM, Boehm AL and Grandis JR: STAT-mediated EGFR signaling in cancer. J Cell Biochem. 102:311–319. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rouschop KMA, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 120:127–141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Mariño G, Lachkar S, Senovilla L, et al: Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell. 48:667–680. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eimer S, Belaud-Rotureau MA, Airiau K, Jeanneteau M, Laharanne E, Véron N, Vital A, Loiseau H, Merlio JP and Belloc F: Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death. Cancer Biol Ther. 11:1017–1027. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Meng Y and Zhang QZ: LAPTM4B is a novel diagnostic and prognostic marker for lung adenocarcinoma and associated with mutant EGFR. BMC Cancer. 19:2932019. View Article : Google Scholar : PubMed/NCBI | |
Tian M, Chen Y, Tian D, Qiao X, Ma Z and Li J: Beclin1 antagonizes LAPTM4B-mediated EGFR overactivation in gastric cancer cells. Gene. 626:48–53. 2017. View Article : Google Scholar : PubMed/NCBI |