1
|
Bowling FZ, Frohman MA and Airola MV:
Structure and regulation of human phospholipase D. Adv Biol.
79:1007832021.PubMed/NCBI
|
2
|
Zeisel SH and da Costa KA: Choline: An
essential nutrient for public health. Nutr Rev. 67:615–623. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Onono FO and Morris AJ: Phospholipase d
and choline metabolism. In: Lipid signaling in human diseases.
Gomez-Cambronero J and Frohman MA: 259. Springer International
Publishing; Cham: pp. 205–218. 2019
|
4
|
Kosmopoulou M, Giannopoulou AF, Iliou A,
Benaki D, Panagiotakis A, Velentzas AD, Konstantakou EG,
Papassideri IS, Mikros E, Stravopodis DJ and Gikas E: Human
melanoma-cell metabolic profiling: Identification of novel
biomarkers indicating metastasis. Int J Mol Sci. 21:24362020.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Glunde K, Bhujwalla ZM and Ronen SM:
Choline metabolism in malignant transformation. Nat Rev Cancer.
11:835–848. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Mahankali M, Henkels KM and
Gomez-Cambronero J: A GEF-to-phospholipase molecular switch caused
by phosphatidic acid, Rac and JAK tyrosine kinase that explains
leukocyte cell migration. J Cell Sci. 126:1416–1428.
2013.PubMed/NCBI
|
7
|
Gomez-Cambronero J, Morris AJ and Henkels
KM: PLD protein-protein interactions with signaling molecules and
modulation by PA. Methods Enzymol. 583:327–357. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Henkels KM, Mahankali M and
Gomez-Cambronero J: Increased cell growth due to a new lipase-GEF
(Phospholipase D2) fastly acting on Ras. Cell Signal. 25:198–205.
2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gomez-Cambronero J: Phospholipase D in
cell signaling: From a myriad of cell functions to cancer growth
and metastasis. J Biol Chem. 289:22557–22566. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gomez-Cambronero J: Phosphatidic acid,
phospholipase D and tumorigenesis. Adv Biol Regul. 54:197–206.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Brown HA, Thomas PG and Lindsley CW:
Targeting phospholipase D in cancer, infection and
neurodegenerative disorders. Nat Rev Drug Discov. 16:351–367. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Henkels KM, Boivin GP, Dudley ES,
Berberich SJ and Gomez-Cambronero J: Phospholipase D (PLD) drives
cell invasion, tumor growth and metastasis in a human breast cancer
xenograph model. Oncogene. 32:5551–5562. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H
and Xu Y: Phospholipase D as a key modulator of cancer progression.
Biol Rev Camb Philos Soc. 95:911–935. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oshimoto H, Okamura S, Yoshida M and Mori
M: Increased activity and expression of phospholipase D2 in human
colorectal cancer. Oncol Res. 14:31–37. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saito M, Iwadate M, Higashimoto M, Ono K,
Takebayashi Y and Takenoshita S: Expression of phospholipase D2 in
human colorectal carcinoma. Oncol Rep. 18:1329–1334.
2007.PubMed/NCBI
|
16
|
Kandori S, Kojima T, Matsuoka T, Yoshino
T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y and
Nishiyama H: Phospholipase D2 promotes disease progression of renal
cell carcinoma through the induction of angiogenin. Cancer Sci.
109:1865–1875. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
McDermott MI, Wang Y, Wakelam MJO and
Bankaitis VA: Mammalian phospholipase D: Function, and
therapeutics. Prog Lipid Res. 78:1010182020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Noble AR, Hogg K, Suman R, Berney DM,
Bourgoin S, Maitland NJ and Rumsby MG: Phospholipase D2 in prostate
cancer: Protein expression changes with Gleason score. Br J Cancer.
121:1016–1026. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Henkels KM, Farkaly T, Mahankali M, Segall
JE and Gomez-Cambronero J: Cell invasion of highly metastatic MTLn3
cancer cells is dependent on phospholipase D2 (PLD2) and janus
kinase 3 (JAK3). J Mol Biol. 408:850–862. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Knoepp SM, Chahal MS, Xie Y, Zhang Z,
Brauner DJ, Hallman MA, Robinson SA, Han S, Imai M, Tomlinson S and
Meier KE: Effects of active and inactive phospholipase D2 on signal
transduction, adhesion, migration, invasion, and metastasis in EL4
lymphoma cells. Mol Pharmacol. 74:574–584. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Scott SA, Selvy PE, Buck JR, Cho HP,
Criswell TL, Thomas AL, Armstrong MD, Arteaga CL, Lindsley CW and
Brown HA: Design of isoform-selective phospholipase D inhibitors
that modulate cancer cell invasiveness. Nat Chem Biol. 5:108–117.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Riebeling C, Müller C and Geilen C:
Expression and regulation of phospholipase D isoenzymes in human
melanoma cells and primary melanocytes. Melanoma Res. 13:555–562.
2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dogliotti G, Kullmann L, Dhumale P, Thiele
C, Panichkina O, Mendl G, Houben R, Haferkamp S, Püschel AW and
Krahn MP: Membrane-binding and activation of LKB1 by phosphatidic
acid is essential for development and tumour suppression. Nat
Commun. 8:157472017. View Article : Google Scholar : PubMed/NCBI
|
24
|
American Cancer Society, . Cancer Facts
& Figures 2020. American Cancer Society; Atlanta, GA: 2020
|
25
|
Guterres AN, Herlyn M and Villanueva J:
Melanoma. eLS. John Wiley & Sons; Hoboken, NJ: pp. 1–10.
2018
|
26
|
Gomez-Cambronero J, Horwitz J and Sha'afi
RI: Measurements of phospholipases A2, C, and D
(PLA2, PLC, and PLD): In vitro microassays, analysis of
enzyme isoforms, and intact-cell assays. Methods Mol Biol.
218:155–176. 2003.PubMed/NCBI
|
27
|
Henderson F, Johnston HR, Badrock AP,
Jones EA, Forster D, Nagaraju RT, Evangelou C, Kamarashev J, Green
M, Fairclough M, et al: Enhanced fatty acid scavenging and
glycerophospholipid metabolism accompany melanocyte neoplasia
progression in zebrafish. Cancer Res. 79:2136–2151. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Park JB, Lee CS, Jang JH, Ghim J, Kim YJ,
You S, Hwang D, Suh PG and Ryu SH: Phospholipase signalling
networks in cancer. Nat Rev Cancer. 12:782–792. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qu J, Zhao X, Wang J, Liu C, Sun Y, Cai H
and Liu J: Plasma phospholipase A2 activity may serve as a novel
diagnostic biomarker for the diagnosis of breast cancer. Oncol
Lett. 15:5236–5242. 2018.PubMed/NCBI
|
30
|
Gomez-Cambronero J, Fite K and Miller TE:
How miRs and mRNA deadenylases could post-transcriptionally
regulate expression of tumor-promoting protein PLD. Adv Biol Regul.
68:107–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kato Y, Lambert CA, Colige AC, Mineur P,
Noël A, Frankenne F, Foidart JM, Baba M, Hata RI, Miyazaki K and
Tsukuda M: Acidic extracellular pH induces matrix
metalloproteinase-9 expression in mouse metastatic melanoma cells
through the phospholipase D-mitogen-activated Protein Kinase
Signaling. J Biol Chem. 280:10938–10944. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jenkins GM and Frohman MA: Phospholipase
D: A lipid centric review. Cell Mol Life Sci. 62:2305–2316. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Gomez-Cambronero J: New concepts in
phospholipase D signaling in inflammation and cancer.
ScientificWorldJournal. 10:1356–1369. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yoon MS, Rosenberger CL, Wu C, Truong N,
Sweedler JV and Chen J: Rapid mitogenic regulation of the mTORC1
inhibitor, DEPTOR, by phosphatidic acid. Mol Cell. 58:549–556.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yin H, Gui Y, Du G, Frohman MA and Zheng
XL: Dependence of Phospholipase D1 multi-monoubiquitination on its
enzymatic activity and palmitoylation. J Biol Chem.
285:13580–13588. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jang YH and Min DS: The hydrophobic amino
acids involved in the interdomain association of phospholipase D1
regulate the shuttling of phospholipase D1 from vesicular
organelles into the nucleus. Exp Mol Med. 44:571–577. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Donaldson JG: Phospholipase D in
endocytosis and endosomal recycling pathways. Biochim Biophys Acta.
1791:845–849. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dall'Armi C, Hurtado-Lorenzo A, Tian H,
Morel E, Nezu A, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, et
al: The phospholipase D1 pathway modulates macroautophagy. Nat
Commun. 1:1422010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Singh NK, Hansen DE III,
Kundumani-Sridharan V and Rao GN: Both Kdr and Flt1 play a vital
role in hypoxia-induced Src-PLD1-PKCγ-cPLA2 activation and retinal
neovascularization. Blood. 121:1911–1923. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu Y, Su Y and Wang X: Phosphatidic
Acid-Mediated Signaling. Lipid-mediated Protein Signaling.
Capelluto DGS: Springer Netherlands; Dordrecht: pp. 159–176. 2013,
View Article : Google Scholar
|
41
|
Frohman MA: The phospholipase D
superfamily as therapeutic targets. Trends Pharmacol Sci.
36:137–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee S and Lynch KR: Brown recluse spider
(Loxosceles reclusa) venom phospholipase D (PLD) generates
lysophosphatidic acid (LPA). Biochem J. 391:317–323. 2005.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang Z, Zhang F, He J, Wu P, Tay LWR, Cai
M, Nian W, Weng Y, Qin L, Chang JT, et al: Binding of
PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface
trafficking and lung metastasis of mouse breast cancer cells. Dev
Cell. 43:186–197.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Borel M, Lollo G, Magne D, Buchet R,
Brizuela L and Mebarek S: Prostate cancer-derived exosomes promote
osteoblast differentiation and activity through phospholipase D2.
Biochim Biophys Acta Mol Basis Dis. 1866:1659192020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Muñoz-Galván S, Lucena-Cacace A, Perez M,
Otero-Albiol D, Gomez-Cambronero J and Carnero A: Tumor
cell-secreted PLD increases tumor stemness by senescence-mediated
communication with microenvironment. Oncogene. 38:1309–1323. 2019.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Zheng Y, Rodrik V, Toschi A, Shi M, Hui L,
Shen Y and Foster DA: Phospholipase D couples survival and
migration signals in stress response of human cancer cells. J Biol
Chem. 281:15862–15868. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Williger BT, Ho WT and Exton JH:
Phospholipase D mediates matrix metalloproteinase-9 secretion in
phorbol ester-stimulated human fibrosarcoma cells. J Biol Chem.
274:735–738. 1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Noble AR, Maitland NJ, Berney DM and
Rumsby MG: Phospholipase D inhibitors reduce human prostate cancer
cell proliferation and colony formation. Br J Cancer. 118:189–199.
2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Powner DJ and Wakelam MJO: The regulation
of phospholipase D by inositol phospholipids and small GTPases.
FEBS Lett. 531:62–64. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Santy LC and Casanova JE: Activation of
ARF6 by ARNO stimulates epithelial cell migration through
downstream activation of both Rac1 and phospholipase D. J Cell
Biol. 154:599–610. 2001. View Article : Google Scholar : PubMed/NCBI
|
53
|
Chae YC, Kim JH, Kim KL, Kim HW, Lee HY,
Heo WD, Meyer T, Suh PG and Ryu SH: Phospholipase D activity
regulates integrin-mediated cell spreading and migration by
inducing gtp-rac translocation to the plasma membrane. Mol Biol
Cell. 19:3111–3123. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hwang WC, Kang DW, Kang Y, Jang Y, Kim JA
and Min DS: Inhibition of phospholipase D2 augments histone
deacetylase inhibitor-induced cell death in breast cancer cells.
Biol Res. 53:342020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Hwang WC, Kim MK, Song JH, Choi KY and Min
DS: Inhibition of phospholipase D2 induces autophagy in colorectal
cancer cells. Exp Mol Med. 46:e1242014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Rodrik V, Zheng Y, Harrow F, Chen Y and
Foster DA: Survival signals generated by estrogen and phospholipase
D in MCF-7 breast cancer cells are dependent on myc. Mol Cell Biol.
25:7917–7925. 2005. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hui L, Rodrik V, Pielak RM, Knirr S, Zheng
Y and Foster DA: MTOR-dependent suppression of protein phosphatase
2a is critical for phospholipase D survival signals in human breast
cancer cells. J Biol Chem. 280:35829–35835. 2005. View Article : Google Scholar : PubMed/NCBI
|
58
|
Hui L, Zheng Y, Yan Y, Bargonetti J and
Foster DA: Mutant p53 in MDA-MB-231 breast cancer cells is
stabilized by elevated phospholipase D activity and contributes to
survival signals generated by phospholipase D. Oncogene.
25:7305–7310. 2006. View Article : Google Scholar : PubMed/NCBI
|
59
|
Chen Y, Rodrik V and Foster DA:
Alternative phospholipase D/mTOR survival signal in human breast
cancer cells. Oncogene. 24:672–679. 2005. View Article : Google Scholar : PubMed/NCBI
|
60
|
Moolenaar WH, Kruijer W, Tilly BC, Verlaan
I, Bierman AJ and de Laat SW: Growth factor-like action of
phosphatidic acid. Nature. 323:171–173. 1986. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rizzo MA, Shome K, Vasudevan C, Stolz DB,
Sung TC, Frohman MA, Watkins SC and Romero G: Phospholipase D and
its product, phosphatidic acid, mediate agonist-dependent Raf-1
translocation to the plasma membrane and the activation of the
mitogen-activated protein kinase pathway. J Biol Chem.
274:1131–1139. 1999. View Article : Google Scholar : PubMed/NCBI
|
62
|
Bruntz RC, Lindsley CW and Brown HA:
Phospholipase D signaling pathways and phosphatidic acid as
therapeutic targets in cancer. Pharmacol Rev. 66:1033–1079. 2014.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Zhao C, Du G, Skowronek K, Frohman MA and
Bar-Sagi D: Phospholipase D2-generated phosphatidic acid couples
EGFR stimulation to Ras activation by Sos. Nat Cell Biol.
9:707–712. 2007. View Article : Google Scholar
|
64
|
Chen Y, Zheng Y and Foster DA:
Phospholipase D confers rapamycin resistance in human breast cancer
cells. Oncogene. 22:3937–3942. 2003. View Article : Google Scholar : PubMed/NCBI
|
65
|
Ghim J, Moon JS, Lee CS, Lee J, Song P,
Lee A, Jang JH, Kim D, Yoon JH, Koh YJ, et al: Endothelial deletion
of phospholipase d2 reduces hypoxic response and pathological
angiogenesis. Arterioscler Thromb Vasc Biol. 34:1697–1703. 2014.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Park MH, Ahn BH, Hong YK and Min DS:
Overexpression of phospholipase D enhances matrix
metalloproteinase-2 expression and glioma cell invasion via protein
kinase C and protein kinase A/NF-κB/Sp1-mediated signaling
pathways. Carcinogenesis. 30:356–365. 2009. View Article : Google Scholar : PubMed/NCBI
|
67
|
Kang DW, Park MH, Lee YJ, Kim HS, Lindsley
CW, Brown HA and Min DS: Autoregulation of phospholipase D activity
is coupled to selective induction of phospholipase D1 expression to
promote invasion of breast cancer cells. Int J Cancer. 128:805–816.
2011. View Article : Google Scholar : PubMed/NCBI
|