1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun
Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019.
View Article : Google Scholar
|
3
|
Huang CY, Chang WS, Tsai CW, Hsia TC, Shen
TC, Bau DT and Shui HA: The contribution of interleukin-8 genotypes
and expression to nasopharyngeal cancer susceptibility in Taiwan.
Medicine (Baltimore). 97:e121352018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB,
Sun Y, Li WX, Chen YY, Xie FY, Liang SB, et al: Adjuvant
chemotherapy in patients with locoregionally advanced
nasopharyngeal carcinoma: Long-term results of a phase 3
multicentre randomised controlled trial. Eur J Cancer. 75:150–158.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mansour MA: Ubiquitination: Friend and foe
in cancer. Int J Biochem Cell Biol. 101:80–93. 2018. View Article : Google Scholar
|
7
|
Hoeller D and Dikic I: Targeting the
ubiquitin system in cancer therapy. Nature. 458:438–444. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hsu SH, Chen SH, Kuo CC and Chang JY:
Ubiquitin-conjugating enzyme E2 B regulates the ubiquitination of
O6-methylguanine-DNA methyltransferase and BCNU sensitivity in
human nasopharyngeal carcinoma cells. Biochem Pharmacol.
158:327–338. 2018. View Article : Google Scholar
|
9
|
Chen SH, Huang WT, Kao WC, Hsiao SY, Pan
HY, Fang CW, Shiue YL, Chou CL and Li CF: O6-methylguanine-DNA
methyltransferase modulates cisplatin-induced DNA double-strand
breaks by targeting the homologous recombination pathway in
nasopharyngeal carcinoma. J Biomed Sci. 28:22021. View Article : Google Scholar
|
10
|
Sengupta S, den Boon JA, Chen IH, Newton
MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, et
al: Genome-wide expression profiling reveals EBV-associated
inhibition of MHC class I expression in nasopharyngeal carcinoma.
Cancer Res. 66:7999–8006. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Thompson L: World health organization
classification of tumours: Pathology and genetics of head and neck
tumours. Ear Nose Throat J. 85:742006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Edge SB and Compton CC: The American Joint
Committee on cancer: the 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar
|
13
|
Lee YY, Chao TB, Sheu MJ, Tian YF, Chen
TJ, Lee SW, He HL, Chang IW, Hsing CH, Lin CY and Li CF: Glutamate
Decarboxylase 1 overexpression as a poor prognostic factor in
patients with nasopharyngeal carcinoma. J Cancer. 7:1716–1723.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wolden SL, Zelefsky MJ, Kraus DH,
Rosenzweig KE, Chong LM, Shaha AR, Zhang H, Harrison LB, Shah JP
and Pfister DG: Accelerated concomitant boost radiotherapy and
chemotherapy for advanced nasopharyngeal carcinoma. J Clin Oncol.
19:1105–1110. 2001. View Article : Google Scholar
|
15
|
Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS
and Wang WY: Phase III study of concurrent chemoradiotherapy versus
radiotherapy alone for advanced nasopharyngeal carcinoma: Positive
effect on overall and progression-free survival. J Clin Oncol.
21:631–637. 2003. View Article : Google Scholar
|
16
|
Kuo CC, Liu JF and Chang JY: DNA repair
enzyme, O6-methylguanine DNA methyltransferase, modulates
cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J
Pharmacol Exp Ther. 316:946–954. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tang LL, Chen WQ, Xue WQ, He YQ, Zheng RS,
Zeng YX and Jia WH: Global trends in incidence and mortality of
nasopharyngeal carcinoma. Cancer Lett. 374:22–30. 2016. View Article : Google Scholar
|
18
|
Lee AW, Foo W, Mang O, Sze WM, Chappell R,
Lau WH and Ko WM: Changing epidemiology of nasopharyngeal carcinoma
in Hong Kong over a 20-year period (1980–99): An encouraging
reduction in both incidence and mortality. Int J Cancer.
103:680–685. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin DC, Meng X, Hazawa M, Nagata Y, Varela
AM, Xu L, Sato Y, Liu LZ, Ding LW, Sharma A, et al: The genomic
landscape of nasopharyngeal carcinoma. Nat Genet. 46:866–871. 2014.
View Article : Google Scholar
|
20
|
Zheng H, Dai W, Cheung AK, Ko JM, Kan R,
Wong BW, Leong MM, Deng M, Kwok TC, Chan JY, et al: Whole-exome
sequencing identifies multiple loss-of-function mutations of NF-κB
pathway regulators in nasopharyngeal carcinoma. Proc Natl Acad Sci
USA. 113:11283–11288. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li YY, Chung GT, Lui VW, To KF, Ma BB,
Chow C, Woo JK, Yip KY, Seo J, Hui EP, et al: Exome and genome
sequencing of nasopharynx cancer identifies NF-κB pathway
activating mutations. Nat Commun. 8:141212017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yee-Lin V, Pooi-Fong W and Soo-Beng AK:
Nutlin-3, A p53-Mdm2 antagonist for nasopharyngeal carcinoma
treatment. Mini Rev Med Chem. 18:173–183. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong Q, Liu ZH, Lin ZR, Hu ZD, Yuan L,
Liu YM, Zhou AJ, Xu LH, Hu LJ, Wang ZF, et al: The RARS-MAD1L1
fusion gene induces cancer stem cell-like properties and
therapeutic resistance in nasopharyngeal carcinoma. Clin Cancer
Res. 24:659–673. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu H, Zeng L, Guan Y, Feng X, Zhu Y, Lu Y,
Shi C, Chen S, Xia J, Guo J, et al: High NEK2 confers to poor
prognosis and contributes to cisplatin-based chemotherapy
resistance in nasopharyngeal carcinoma. J Cell Biochem.
120:3547–3558. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bissey PA, Law JH, Bruce JP, Shi W,
Renoult A, Chua MLK, Yip KW and Liu FF: Dysregulation of the
MiR-449b target TGFBI alters the TGFβ pathway to induce cisplatin
resistance in nasopharyngeal carcinoma. Oncogenesis. 7:402018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gallo LH, Ko J and Donoghue DJ: The
importance of regulatory ubiquitination in cancer and metastasis.
Cell Cycle. 16:634–648. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang J, Huang Y, Guan Z, Zhang JL, Su HK,
Zhang W, Yue CF, Yan M, Guan S and Liu QQ: E3-ligase Skp2 predicts
poor prognosis and maintains cancer stem cell pool in
nasopharyngeal carcinoma. Oncotarget. 5:5591–5601. 2014. View Article : Google Scholar
|
28
|
Chen ZG, Wang YJ, Chen RS, Geng F, Gan CL,
Wang WS, Liu X, Zhou H, He L, Hu G and Liu JG: Ube2b-dependent
degradation of DNMT3a relieves a transcriptional brake on
opiate-induced synaptic and behavioral plasticity. Mol Psychiatry.
26:1162–1177. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nagy Á, Lánczky A, Menyhárt O and Győrffy
B: Validation of miRNA prognostic power in hepatocellular carcinoma
using expression data of independent datasets. Sci Rep. 8:92272018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang WL, Luo CW, Chou CL, Yang CC, Chen
TJ, Li CF and Pan MR: High expression of UBE2B as a poor prognosis
factor in patients with rectal cancer following chemoradiotherapy.
Anticancer Res. 40:6305–6317. 2020. View Article : Google Scholar : PubMed/NCBI
|