1
|
Florou AN, Gkiozos IC, Tsagouli SK,
Souliotis KN and Syrigos KN: Clinical significance of smoking
cessation in subjects with cancer: A 30-year review. Respir Care.
59:1924–1936. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Condoluci A, Mazzara C, Zoccoli A, Pezzuto
A and Tonini G: Impact of smoking on lung cancer treatment
effectiveness: A review. Future Oncol. 12:2149–2161. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hecht SS: Cigarette smoking: Cancer risks,
carcinogens, and mechanisms. Langenbecks Arch Surg. 391:603–613.
2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hecht SS: Cigarette smoking and lung
cancer: Chemical mechanisms and approaches to prevention. Lancet
Oncol. 3:461–469. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
McCann MF, Irwin DE, Walton LA, Hulka BS,
Morton JL and Axelrad CM: Nicotine and cotinine in the cervical
mucus of smokers, passive smokers, and nonsmokers. Cancer Epidemiol
Biomarkers Prev. 1:125–129. 1992.PubMed/NCBI
|
6
|
Chand HS, Muthumalage T, Maziak W and
Rahman I: Pulmonary toxicity and the pathophysiology of electronic
cigarette, or vaping product, use associated lung injury. Front
Pharmacol. 10:16192020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bracken-Clarke D, Kapoor D, Baird AM,
Buchanan PJ, Gately K, Cuffe S and Finn SP: Vaping and lung
cancer-a review of current data and recommendations. Lung Cancer.
153:11–20. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Beane J, Sebastiani P, Liu G, Brody JS,
Lenburg ME and Spira A: Reversible and permanent effects of tobacco
smoke exposure on airway epithelial gene expression. Genome Biol.
8:R2012007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Spira A, Beane J, Shah V, Liu G, Schembri
F, Yang X, Palma J and Brody JS: Effects of cigarette smoke on the
human airway epithelial cell transcriptome. Proc Natl Acad Sci USA.
101:10143–10148. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang G, Wang R, Strulovici-Barel Y, Salit
J, Staudt MR, Ahmed J, Tilley AE, Yee-Levin J, Hollmann C, Harvey
BG, et al: Persistence of smoking-induced dysregulation of miRNA
expression in the small airway epithelium despite smoking
cessation. PLoS One. 10:e01208242015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Willinger CM, Rong J, Tanriverdi K,
Courchesne PL, Huan T, Wasserman GA, Lin H, Dupuis J, Joehanes R,
Jones MR, et al: MicroRNA signature of cigarette smoking and
evidence for a putative causal role of MicroRNAs in smoking-related
inflammation and target organ damage. Circ Cardiovasc Genet.
10:e0016782017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qian Y, Mao ZD, Shi YJ, Liu ZG, Cao Q and
Zhang Q: Comprehensive analysis of miRNA-mRNA-lncRNA networks in
non-smoking and smoking patients with chronic obstructive pulmonary
disease. Cell Physiol Biochem. 50:1140–1153. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Solleti SK, Bhattacharya S, Ahmad A, Wang
Q, Mereness J, Rangasamy T and Mariani TJ: MicroRNA expression
profiling defines the impact of electronic cigarettes on human
airway epithelial cells. Sci Rep. 7:10812017. View Article : Google Scholar : PubMed/NCBI
|
14
|
McConnell DD, Carr SB and Litofsky NS:
Potential effects of nicotine on glioblastoma and
chemoradiotherapy: A review. Expert Rev Neurother. 19:545–555.
2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Delitto D, Zhang D, Han S, Black BS,
Knowlton AE, Vlada AC, Sarosi GA, Behrns KE, Thomas RM, Lu X, et
al: Nicotine reduces survival via augmentation of paracrine HGF-MET
signaling in the pancreatic cancer microenvironment. Clin Cancer
Res. 22:1787–1799. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guha P, Bandyopadhyaya G, Polumuri SK,
Chumsri S, Gade P, Kalvakolanu DV and Ahmed H: Nicotine promotes
apoptosis resistance of breast cancer cells and enrichment of side
population cells with cancer stem cell-like properties via a
signaling cascade involving galectin-3, α9 nicotinic acetylcholine
receptor and STAT3. Breast Cancer Res Treat. 145:5–22. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu L, Shi X, Zhao H, Yang M, Wang C, Liao
M and Zhao J: Nicotine induces cell survival and chemoresistance by
stimulating Mcl-1 phosphorylation and its interaction with Bak in
lung cancer. J Cell Physiol. Feb 11–2019.(Epub ahead of print).
|
18
|
Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y,
Tanaka N, Kosaka T, Miyajima A and Oya M: Nicotine induces tumor
growth and chemoresistance through activation of the PI3K/Akt/mTOR
pathway in bladder cancer. Mol Cancer Ther. 14:2112–2120. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Xin M and Deng X: Nicotine inactivation of
the proapoptotic function of Bax through phosphorylation. J Biol
Chem. 280:10781–10789. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mai H, May WS, Gao F, Jin Z and Deng X: A
functional role for nicotine in Bcl2 phosphorylation and
suppression of apoptosis. J Biol Chem. 278:1886–1891. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Deng X, Liu Z, Liu X, Fu Q, Deng T, Lu J,
Liu Y, Liang Z, Jiang Q, Cheng C and Fang W: miR-296-3p negatively
regulated by nicotine stimulates cytoplasmic translocation of c-Myc
via MK2 to suppress chemotherapy resistance. Mol Ther.
26:1066–1081. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Detterbeck FC, Boffa DJ, Kim AW and Tanoue
LT: The eight edition lung cancer stage classification. Chest.
151:193–203. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Pan T, Zhong X and Cheng C:
Nicotine upregulates microRNA-21 and promotes TGF-β-dependent
epithelial-mesenchymal transition of esophageal cancer cells.
Tumour Biol. 35:7063–7072. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li N, Mai Y, Liu Q, Gou G and Yang J:
Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate
liposomes improve lung cancer chemotherapy and reverse multidrug
resistance. Drug Deliv Transl Res. 11:131–141. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou J, Li Z, Li J, Gao B and Song W:
Chemotherapy resistance molecular mechanism in small cell lung
cancer. Curr Mol Med. 19:157–163. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Takano M and Sugiyama T: UGT1A1
polymorphisms in cancer: Impact on irinotecan treatment.
Pharmgenomics Pers Med. 10:61–68. 2017.PubMed/NCBI
|
29
|
Shen T, Le W, Yee A, Kamdar O, Hwang PH
and Upadhyay D: Nicotine induces resistance to chemotherapy in
nasal epithelial cancer. Am J Rhinol Allergy. 24:e73–e77. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang J, Kamdar O, Le W, Rosen GD and
Upadhyay D: Nicotine induces resistance to chemotherapy by
modulating mitochondrial signaling in lung cancer. Am J Respir Cell
Mol Biol. 40:135–146. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM
and Zhang GZ: Biological functions of microRNAs: A review. J
Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu P, Liang H, Xia Q, Li P, Kong H, Lei
P, Wang S and Tu Z: Resveratrol induces apoptosis of pancreatic
cancers cells by inhibiting miR-21 regulation of BCL-2 expression.
Clin Transl Oncol. 15:741–746. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Meng F, Henson R, Wehbe-Janek H, Ghoshal
K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the
PTEN tumor suppressor gene in human hepatocellular cancer.
Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Papagiannakopoulos T, Shapiro A and Kosik
KS: MicroRNA-21 targets a network of key tumor-suppressive pathways
in glioblastoma cells. Cancer Res. 68:8164–8172. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Krichevsky AM and Gabriely G: miR-21: A
small multi-faceted RNA. J Cell Mol Med. 13:39–53. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu J, Liui B, Wang Z, Wang D, Ni H, Zhang
L and Wang Y: Exosomes from nicotine-stimulated macrophages
accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC
migration and proliferation. Theranostics. 9:6901–6919. 2019.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Dino P, D'Anna C, Sangiorgi C, Di Sano C,
Di Vincenzo S, Ferraro M and Pace E: Cigarette smoke extract
modulates E-Cadherin, Claudin-1 and miR-21 and promotes cancer
invasiveness in human colorectal adenocarcinoma cells. Toxicol
Lett. 317:102–109. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang W, Ding M, Duan X, Feng X, Wang P,
Jiang Q, Cheng Z, Zhang W, Yu S, Yao W, et al: Diagnostic value of
plasma MicroRNAs for lung cancer using support vector machine
model. J Cancer. 10:5090–5098. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W,
Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in
carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dudgeon C, Wang P, Sun X, Peng R, Sun Q,
Yu J and Zhang L: PUMA induction by FoxO3a mediates the anticancer
activities of the broad-range kinase inhibitor UCN-01. Mol Cancer
Ther. 9:2893–2902. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lim EJ, Park DW, Lee JG, Lee CH, Bae YS,
Hwang YC, Jeong JW, Chin BR and Baek SH: Toll-like receptor
9-mediated inhibition of apoptosis occurs through suppression of
FoxO3a activity and induction of FLIP expression. Exp Mol Med.
42:712–720. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sundaresan NR, Gupta M, Kim G, Rajamohan
SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic
response by augmenting Foxo3a-dependent antioxidant defense
mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI
|
43
|
Yamamoto M, Kondo E, Takeuchi M, Harashima
A, Otani T, Tsuji-Takayama K, Yamasaki F, Kumon H, Kibata M and
Nakamura S: miR-155, a modulator of FOXO3a protein expression, is
underexpressed and cannot be upregulated by stimulation of HOZOT, a
line of multifunctional treg. PLoS One. 6:e168412011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim HY, Kwon HY, Ha Thi HT, Lee HJ, Kim
GI, Hahm KB and Hong S: MicroRNA-132 and microRNA-223 control
positive feedback circuit by regulating FOXO3a in inflammatory
bowel disease. J Gastroenterol Hepatol. 31:1727–1735. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Ge YF, Sun J, Jin CJ, Cao BQ, Jiang ZF and
Shao JF: AntagomiR-27a targets FOXO3a in glioblastoma and
suppresses U87 cell growth in vitro and in vivo. Asian Pac J Cancer
Prev. 14:963–968. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wong HK, Veremeyko T, Patel N, Lemere CA,
Walsh DM, Esau C, Vanderburg C and Krichevsky AM: De-repression of
FOXO3a death axis by microRNA-132 and −212 causes neuronal
apoptosis in Alzheimer's disease. Hum Mol Genet. 22:3077–3092.
2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cai J, Fang L, Huang Y, Li R, Yuan J, Yang
Y, Zhu X, Chen B, Wu J and Li M: miR-205 targets PTEN and PHLPP2 to
augment AKT signaling and drive malignant phenotypes in non-small
cell lung cancer. Cancer Res. 73:5402–5415. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Guo Y, Zhao Y, Zhou Y, Tang X, Li Z and
Wang X: LZ-101, a novel derivative of danofloxacin, induces
mitochondrial apoptosis by stabilizing FOXO3a via blocking
autophagy flux in NSCLC cells. Cell Death Dis. 10:4842019.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang J, Sun T, Meng Z, Wang L, Li M, Chen
J, Qin T, Yu J, Zhang M, Bie Z, et al: XPO1 inhibition synergizes
with PARP1 inhibition in small cell lung cancer by targeting
nuclear transport of FOXO3a. Cancer Lett. 503:197–212. 2021.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Gong Q, Cao X, Cao J, Yang X and Zeng W:
Casticin suppresses the carcinogenesis of small cell lung cancer
H446 cells through activation of AMPK/FoxO3a signaling. Oncol Rep.
40:1401–1410. 2018.PubMed/NCBI
|
51
|
Joo JC, Hwang JH, Jo E, Kim YR, Kim DJ,
Lee KB, Park SJ and Jang IS: Cordycepin induces apoptosis by
caveolin-1-mediated JNK regulation of Foxo3a in human lung
adenocarcinoma. Oncotarget. 8:12211–12224. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu X, Feng J, Tang L, Liao L, Xu Q and
Zhu S: The regulation and function of miR-21-FOXO3a-miR-34b/c
signaling in breast cancer. Int J Mol Sci. 16:3148–3162. 2015.
View Article : Google Scholar : PubMed/NCBI
|