1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reichenbach ZW, Murray MG, Saxena R,
Farkas D, Karassik EG, Klochkova A, Patel K, Tice C, Hall TM, Gang
J, et al: Clinical and translational advances in esophageal
squamous cell carcinoma. Adv Cancer Res. 144:95–135. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Arnold M, Soerjomataram I, Ferlay J and
Forman D: Global incidence of oesophageal cancer by histological
subtype in 2012. Gut. 64:381–387. 2015. View Article : Google Scholar
|
4
|
Ono T, Wada H, Ishikawa H, Tamamura H and
Tokumaru S: Clinical results of proton beam therapy for esophageal
cancer: Multicenter Retrospective Study in Japan. Cancers (Basel).
11:9932019. View Article : Google Scholar
|
5
|
Mwachiro MM, Parker RK, Pritchett NR,
Lando JO, Ranketi S, Murphy G, Chepkwony R, Burgert SL, Abnet CC,
Topazian MD, et al: Investigating tea temperature and content as
risk factors for esophageal cancer in an endemic region of Western
Kenya: Validation of a questionnaire and analysis of polycyclic
aromatic hydrocarbon content. Cancer Epidemiol. 60:60–66. 2019.
View Article : Google Scholar
|
6
|
Jones SD, van der Flier A and Sonnenberg
A: Genomic organization of the human alpha 3 integrin subunit gene.
Biochem Biophys Res Commun. 248:896–898. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dedhar S, Gray V, Robertson K and Saulnier
R: Identification and characterization of a novel
high-molecular-weight form of the integrin alpha 3 subunit. Exp
Cell Res. 203:270–275. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiao Y, Li Y, Liu S, Chen Q and Liu Y:
ITGA3 serves as a diagnostic and prognostic biomarker for
pancreatic cancer. Onco Targets Ther. 12:4141–4152. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Li Y, Li F, Bai X, Li Y, Ni C, Zhao X and
Zhang D: ITGA3 Is Associated with immune cell infiltration and
serves as a favorable prognostic biomarker for breast cancer. Front
Oncol. 11:6585472021. View Article : Google Scholar
|
10
|
Bijnsdorp IV, Geldof AA, Lavaei M, Piersma
SR, van Moorselaar RJ and Jimenez CR: Exosomal ITGA3 interferes
with non-cancerous prostate cell functions and is increased in
urine exosomes of metastatic prostate cancer patients. J Extracell
Vesicles. 2:220972013. View Article : Google Scholar
|
11
|
Denadai MV, Viana LS, Affonso RJ Jr, Silva
SR, Oliveira ID, Toledo SR and Matos D: Expression of integrin
genes and proteins in progression and dissemination of colorectal
adenocarcinoma. BMC Clin Pathol. 13:162013. View Article : Google Scholar
|
12
|
Linhares MM, Affonso RJ Jr, Viana Lde S,
Silva SR, Denadai MV, de Toledo SR and Matos D: Genetic and
immunohistochemical expression of integrins ITGAV, ITGA6, and ITGA3
as prognostic factor for colorectal cancer: Models for global and
disease-free survival. PLoS One. 10:e01443332015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kurozumi A, Goto Y, Matsushita R, Fukumoto
I, Kato M, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa
T and Seki N: Tumor-suppressive microRNA-223 inhibits cancer cell
migration and invasion by targeting ITGA3/ITGB1 signaling in
prostate cancer. Cancer Sci. 107:84–94. 2016. View Article : Google Scholar
|
14
|
Koshizuka K, Nohata N, Hanazawa T, Kikkawa
N, Arai T, Okato A, Fukumoto I, Katada K, Okamoto Y and Seki N:
Deep sequencing-based microRNA expression signatures in head and
neck squamous cell carcinoma: Dual strands of pre-miR-150 as
antitumor miRNAs. Oncotarget. 8:30288–30304. 2017. View Article : Google Scholar
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Onorati AV, Dyczynski M, Ojha R and
Amaravadi RK: Targeting autophagy in cancer. Cancer. 124:3307–3318.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang Y, Kong Y, Zhang L, He T, Zhou X,
Yan Y, Zhang L, Zhou D, Lu S, Zhou J, et al: High expression of
ITGA3 promotes proliferation and cell cycle progression and
indicates poor prognosis in intrahepatic cholangiocarcinoma. Biomed
Res Int. 2018:23521392018. View Article : Google Scholar
|
18
|
Zhang J, Zhong Y, Sang Y and Ren G:
miRNA-144-5p/ITGA3 suppressed the tumor-promoting behaviors of
thyroid cancer cells by downregulating ITGA3. Comput Math Methods
Med. 2021:91819412021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang H, Cui X, Cao A, Li X and Li L:
ITGA3 interacts with VASP to regulate stemness and
epithelial-mesenchymal transition of breast cancer cells. Gene.
734:1443962020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y, Huang WQ and Chen LL: LncRNA NEAT1
regulates proliferation, migration and invasion of tongue squamous
cell carcinoma cells by regulating miR-339-5p/ITGA3 axis. Shanghai
Kou Qiang Yi Xue. 29:267–274. 2020.(In Chinese). PubMed/NCBI
|
21
|
Koshizuka K, Hanazawa T, Kikkawa N, Arai
T, Okato A, Kurozumi A, Kato M, Katada K, Okamoto Y and Seki N:
Regulation of ITGA3 by the anti-tumor miR-199 family inhibits
cancer cell migration and invasion in head and neck cancer. Cancer
Sci. 108:1681–1692. 2017. View Article : Google Scholar
|
22
|
Zhang Y, Li CF, Ma LJ, Ding M and Zhang B:
MicroRNA-224 aggrevates tumor growth and progression by targeting
mTOR in gastric cancer. Int J Oncol. 49:1068–1080. 2016. View Article : Google Scholar
|
23
|
Kim HY, Cho Y, Kang H, Yim YS, Kim SJ,
Song J and Chun KH: Targeting the WEE1 kinase as a molecular
targeted therapy for gastric cancer. Oncotarget. 7:49902–49916.
2016. View Article : Google Scholar
|
24
|
Kanda M, Shimizu D, Fujii T, Tanaka H,
Tanaka Y, Ezaka K, Shibata M, Takami H, Hashimoto R, Sueoka S, et
al: Neurotrophin receptor-interacting melanoma antigen-encoding
gene homolog is associated with malignant phenotype of gastric
cancer. Ann Surg Oncol. 23 (Suppl 4):S532–S539. 2016. View Article : Google Scholar
|
25
|
Kanda M, Shimizu D, Fujii T, Tanaka H,
Shibata M, Iwata N, Hayashi M, Kobayashi D, Tanaka C, Yamada S, et
al: Protein arginine methyltransferase 5 is associated with
malignant phenotype and peritoneal metastasis in gastric cancer.
Int J Oncol. 49:1195–1202. 2016. View Article : Google Scholar
|
26
|
Yu J, Wang X, Li Y and Tang B: Tanshinone
IIA suppresses gastric cancer cell proliferation and migration by
downregulation of FOXM1. Oncol Rep. 37:1394–1400. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jurikova M, Danihel L, Polak S and Varga
I: Ki67, PCNA, and MCM proteins: Markers of proliferation in the
diagnosis of breast cancer. Acta Histochem. 118:544–552. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Jiang H and Li H: Prognostic values of
tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic
review and meta-analysis. BMC Cancer. 21:1492021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu X, Lai Y and Hua ZC: Apoptosis and
apoptotic body: Disease message and therapeutic target potentials.
Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kerr JF: History of the events leading to
the formulation of the apoptosis concept. Toxicology. 181–182.
471–474. 2002.
|
31
|
Plati J, Bucur O and Khosravi-Far R:
Dysregulation of apoptotic signaling in cancer: Molecular
mechanisms and therapeutic opportunities. J Cell Biochem.
104:1124–1149. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Didonna A, Sussman J, Benetti F and
Legname G: The role of Bax and caspase-3 in doppel-induced
apoptosis of cerebellar granule cells. Prion. 6:309–316. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Khan T, Relitti N, Brindisi M, Magnano S,
Zisterer D, Gemma S, Butini S and Campiani G: Autophagy modulators
for the treatment of oral and esophageal squamous cell carcinomas.
Med Res Rev. 40:1002–1060. 2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hall TM, Tetreault MP, Hamilton KE and
Whelan KA: Autophagy as a cytoprotective mechanism in esophageal
squamous cell carcinoma. Curr Opin Pharmacol. 41:12–19. 2018.
View Article : Google Scholar
|
35
|
Xie Y, Zhang J, Lu B, Bao Z, Zhao J, Lu X,
Wei Y, Yao K, Jiang Y, Yuan Q, et al: Mefloquine inhibits
esophageal squamous cell carcinoma tumor growth by inducing
mitochondrial autophagy. Front Oncol. 10:12172020. View Article : Google Scholar
|