EML4‑ALK fusion gene in non‑small cell lung cancer (Review)
- Authors:
- Yu Lei
- Yan Lei
- Xiang Shi
- Jingjing Wang
-
Affiliations: Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China, Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China - Published online on: June 24, 2022 https://doi.org/10.3892/ol.2022.13397
- Article Number: 277
-
Copyright: © Lei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer. Apr 5–2021.(Epub ahead of print). View Article : Google Scholar | |
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barta JA, Powell CA and Wisnivesky JP: Global epidemiology of lung cancer. Ann Glob Health. 85:82019. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Li D, Liang D and He Y: Epidemiology and prognosis in young lung cancer patients aged under 45 years old in northern China. Sci Rep. 11:68172021. View Article : Google Scholar : PubMed/NCBI | |
Hamard C, Mignard X, Pecuchet N, Mathiot N, Blons H, Laurent-Puig P, Leroy K, Lupo A, Chapron J, Giraud F, et al: IHC, FISH, CISH, NGS in non-small cell lung cancer: What changes in the biomarker era? Rev Pneumol Clin. 74:327–338. 2018.(In French). View Article : Google Scholar : PubMed/NCBI | |
Lim AS and Lim TH: Fluorescence in situ hybridization on tissue sections. Methods Mol Biol. 1541:119–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morganti S, Tarantino P, Ferraro E, D'Amico P, Duso BA and Curigliano G: Next generation sequencing (NGS): A revolutionary technology in pharmacogenomics and personalized medicine in cancer. Adv Exp Med Biol. 1168:9–30. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Zhang G, Lian Y, Yan L and Gao H: Exploration and analysis of the value of tumor-marker joint detection in the pathological type of lung cancer. Cell Mol Biol (Noisy-le-grand). 66:93–97. 2020. View Article : Google Scholar : PubMed/NCBI | |
Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, Gadgeel SM, Cheema P, Pavlakis N, de Marinis F, et al: Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J Thorac Oncol. 14:1233–1243. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heigener DF and Reck M: Crizotinib. Recent Results Cancer Res. 211:57–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, et al: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 448:561–566. 2007. View Article : Google Scholar : PubMed/NCBI | |
Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, Haruta H, Hamada T, Yamashita Y, Ishikawa Y, et al: A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA. 105:19893–19897. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suprenant KA, Dean K, McKee J and Hake S: EMAP, an echinoderm microtubule-associated protein found in microtubule-ribosome complexes. J Cell Sci. 104:445–450. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fry AM, O'Regan L, Montgomery J, Adib R and Bayliss R: EML proteins in microtubule regulation and human disease. Biochem Soc Trans. 44:1281–1288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Richards MW, O'Regan L, Roth D, Montgomery JM, Straube A, Fry AM and Bayliss R: Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochem J. 467:529–536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Richards MW, Law EW, Rennalls LP, Busacca S, O'Regan L, Fry AM, Fennell DA and Bayliss R: Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain. Proc Natl Acad Sci USA. 111:5195–5200. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mano H: The EML4-ALK oncogene: Targeting an essential growth driver in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 91:193–201. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, et al: Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell. 184:2649–2664.e18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ladanyi M, Cavalchire G, Morris SW, Downing J and Filippa DA: Reverse transcriptase polymerase chain reaction for the Ki-1 anaplastic large cell lymphoma-associated t(2;5) translocation in Hodgkin's disease. Am J Pathol. 145:1296–1300. 1994.PubMed/NCBI | |
Hurley SP, Clary DO, Copie V and Lefcort F: Anaplastic lymphoma kinase is dynamically expressed on subsets of motor neurons and in the peripheral nervous system. J Comp Neurol. 495:202–212. 2006. View Article : Google Scholar : PubMed/NCBI | |
Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X and Witte DP: ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene. 14:2175–2188. 1997. View Article : Google Scholar : PubMed/NCBI | |
Golding B, Luu A, Jones R and Viloria-Petit AM: The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer. 17:522018. View Article : Google Scholar : PubMed/NCBI | |
Hallberg B and Palmer RH: The role of the ALK receptor in cancer biology. Ann Oncol. 27 (Suppl 3):iii4–iii15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 68:68–94. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bennasroune A, Mazot P, Boutterin MC and Vigny M: Activation of the orphan receptor tyrosine kinase ALK by zinc. Biochem Biophys Res Commun. 398:702–706. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, Ho KK, Au JS, Chung LP and Pik Wong M; University of Hong Kong Lung Cancer Study Group, : The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 115:1723–1733. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vašíková A: EML4-ALK fusion gene in patients with lung carcinoma: Biology, diagnostics and targeted therapy. Klin Onkol. 25:434–439. 2012.PubMed/NCBI | |
Kodama T, Motoi N, Ninomiya H, Sakamoto H, Kitada K, Tsukaguchi T, Satoh Y, Nomura K, Nagano H, Ishii N, et al: A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J Thorac Oncol. 9:1638–1646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Liu H and Chen J: EML4-ALK fusion gene in lung cancer and its biological function. Zhongguo Fei Ai Za Zhi. 15:112–116. 2012.(In Chinese). PubMed/NCBI | |
Bayliss R, Choi J, Fennell DA, Fry AM and Richards MW: Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci. 73:1209–1224. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robertson FM, Petricoin Iii EF, Van Laere SJ, Bertucci F, Chu K, Fernandez SV, Mu Z, Alpaugh K, Pei J, Circo R, et al: Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus. 2:4972013. View Article : Google Scholar : PubMed/NCBI | |
McQuitty E, Zhang W, Hendrickson H, Tio FO, Jagirdar J, Olsen R and Cagle PT: Lung adenocarcinoma biomarker incidence in Hispanic versus non-Hispanic white patients. Arch Pathol Lab Med. 138:390–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sampson J, Richards MW, Choi J, Fry AM and Bayliss R: Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep. 22:e536932021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li Y, Zhang H, Shi R, Zhang Z, Liu H and Chen J: EML4-ALK-mediated activation of the JAK2-STAT pathway is critical for non-small cell lung cancer transformation. BMC Pulm Med. 21:1902021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li G, Zhao L, Pan F, Qiang J and Han S: Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer. Tumour Biol. 35:9759–9767. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takezawa K, Okamoto I, Nishio K, Jänne PA and Nakagawa K: Role of ERK-BIM and STAT3-survivin signaling pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive lung cancer. Clin Cancer Res. 17:2140–2148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ducray SP, Natarajan K, Garland GD, Turner SD and Egger G: The transcriptional roles of ALK fusion proteins in tumorigenesis. Cancers (Basel). 11:10742019. View Article : Google Scholar : PubMed/NCBI | |
Tao H, Shi L, Zhou A, Li H, Gai F, Huang Z, Che N and Liu Z: Distribution of EML4-ALK fusion variants and clinical outcomes in patients with resected non-small cell lung cancer. Lung Cancer. 149:154–161. 2020. View Article : Google Scholar : PubMed/NCBI | |
Heuckmann JM, Balke-Want H, Malchers F, Peifer M, Sos ML, Koker M, Meder L, Lovly CM, Heukamp LC, Pao W, et al: Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res. 18:4682–4690. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maus MK, Stephens C, Zeger G, Grimminger PP and Huang E: Identification of novel variant of EML4-ALK fusion gene in NSCLC: Potential benefits of the RT-PCR method. Int J Biomed Sci. 8:1–6. 2012.PubMed/NCBI | |
Li T, Maus MK, Desai SJ, Beckett LA, Stephens C, Huang E, Hsiang J, Zeger G, Danenberg KD, Astrow SH and Gandara DR: Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays. J Thorac Oncol. 9:18–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cha YJ, Kim HR and Shim HS: Clinical outcomes in ALK-rearranged lung adenocarcinomas according to ALK fusion variants. J Transl Med. 14:2962016. View Article : Google Scholar : PubMed/NCBI | |
Zhang SS, Nagasaka M, Zhu VW and Ou SI: Going beneath the tip of the iceberg. Identifying and understanding EML4-ALK variants and TP53 mutations to optimize treatment of ALK fusion positive (ALK+) NSCLC. Lung Cancer. 158:126–136. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Sun H, Yue M, Pan X, Chen L, Feng X, Yan X, Zhu X and Ji H: Phase separation of EML4-ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov. 7:332021. View Article : Google Scholar : PubMed/NCBI | |
Patel M, Malhotra J and Jabbour SK: Examining EML4-ALK variants in the clinical setting: The next frontier? J Thorac Dis. 10 (Suppl 33):S4104–S4107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schneider F and Dacic S: Histopathologic and molecular approach to staging of multiple lung nodules. Transl Lung Cancer Res. 6:540–549. 2017. View Article : Google Scholar : PubMed/NCBI | |
Panico F, Rizzi F, Fabbri LM, Bettuzzi S and Luppi F: Clusterin (CLU) and lung cancer. Adv Cancer Res. 105:63–76. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wu L, Xu Y, Zhang B, Wu X, Wang Y and Pang Z: Trends in the incidence rate of lung cancer by histological type and gender in Sichuan, China, 1995–2015: A single-center retrospective study. Thorac Cancer. 9:532–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Rodig SJ, Chirieac LR and Jänne PA: The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 46:1773–1780. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aydemirli MD, van Eendenburg JDH, van Wezel T, Oosting J, Corver WE, Kapiteijn E and Morreau H: Targeting EML4-ALK gene fusion variant 3 in thyroid cancer. Endocr Relat Cancer. 28:377–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Akimoto E, Tokunaga M, Sato R, Yoshida A, Naito Y, Yamashita R, Kinoshita T and Kuwata T: Gastric mesenchymal tumor with smooth muscle differentiation and echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion. Pathol Int. 71:707–711. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferrara MG, Di Noia V, D'Argento E, Vita E, Damiano P, Cannella A, Ribelli M, Pilotto S, Milella M, Tortora G and Bria E: Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives. Cancers (Basel). 12:11962020. View Article : Google Scholar : PubMed/NCBI | |
Ohba T, Toyokawa G, Osoegawa A, Hirai F, Yamaguchi M, Taguchi K, Seto T, Takenoyama M, Ichinose Y and Sugio K: Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes in resected pathological stage I lung adenocarcinoma. Surg Today. 46:1091–1098. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Ma J, Lyu X, Liu H, Wei B, Zhao J, Fu S, Ding L and Zhang J: Non-small cell lung cancer with EML4-ALK translocation in Chinese male never-smokers is characterized with early-onset. BMC Cancer. 14:8342014. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Shi X, Yang S, Zhao J, He Q, Jin Y and Yu X: Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer. 131:62–68. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teixidó C, Karachaliou N, Peg V, Gimenez-Capitan A and Rosell R: Concordance of IHC, FISH and RT-PCR for EML4-ALK rearrangements. Transl Lung Cancer Res. 3:70–74. 2014.PubMed/NCBI | |
Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer GA, et al: Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 20:316–322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bayani J and Squire JA: Fluorescence in situ hybridization (FISH). Curr Protoc Cell Biol. Chapter 22: Unit 22.4. 2004. View Article : Google Scholar | |
Querido E, Dekakra-Bellili L and Chartrand P: RNA fluorescence in situ hybridization for high-content screening. Methods. 126:149–155. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhan P, Zhou X, Song Y, Zhou X, Yu L and Wang J: Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 10:e01170322015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang J, Gao G, Li X, Zhao C, He Y, Su C, Zhang S, Chen X, Zhang J, et al: EML4-ALK fusion detected by RT-PCR confers similar response to crizotinib as detected by FISH in patients with advanced non-small-cell lung cancer. J Thorac Oncol. 10:1546–1552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Behjati S and Tarpey PS: What is next generation sequencing? Arch Dis Child Educ Pract Ed. 98:236–238. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hume S, Nelson TN, Speevak M, McCready E, Agatep R, Feilotter H, Parboosingh J, Stavropoulos DJ, Taylor S and Stockley TL; Canadian College of Medical Geneticists (CCMG), : CCMG practice guideline: Laboratory guidelines for next-generation sequencing. J Med Genet. 56:792–800. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, Temple-Smolkin RL, Voelkerding KV and Nikiforova MN: Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the association for molecular pathology and college of American pathologists. J Mol Diagn. 19:341–365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma PC: Personalized targeted therapy in advanced non-small cell lung cancer. Cleve Clin J Med. 79 (Electronic Suppl 1):eS56–eS60. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fallet V, Toper C, Antoine M, Cadranel J and Wislez M: Management of crizotinib, a new individualized treatment. Bull Cancer. 99:787–791. 2012.(In French). View Article : Google Scholar : PubMed/NCBI | |
Khan M, Lin J, Liao G, Tian Y, Liang Y, Li R, Liu M and Yuan Y: ALK inhibitors in the treatment of ALK positive NSCLC. Front Oncol. 8:5572019. View Article : Google Scholar : PubMed/NCBI | |
Cameron LB, Hitchen N, Chandran E, Morris T, Manser R, Solomon BJ and Jordan V: Targeted therapy for advanced anaplastic lymphoma kinase (<I>ALK</I>)-rearranged non-small cell lung cancer. Cochrane Database Syst Rev. 1:CD0134532022.PubMed/NCBI | |
Zhu Q, Hu H, Jiang F, Guo CY, Yang XW, Liu X and Kuang YK: Meta-analysis of incidence and risk of severe adverse events and fatal adverse events with crizotinib monotherapy in patients with ALK-positive NSCLC. Oncotarget. 8:75372–75380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, et al: First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 371:2167–2177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Casaluce F, Sgambato A, Sacco PC, Palazzolo G, Maione P, Rossi A, Ciardiello F and Gridelli C: Resistance to crizotinib in advanced non-small cell lung cancer (NSCLC) with ALK rearrangement: Mechanisms, treatment strategies and new targeted therapies. Curr Clin Pharmacol. 11:77–87. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dhillon S and Clark M: Ceritinib: First global approval. Drugs. 74:1285–1291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spencer SA, Riley AC, Matthew A and Di Pasqua AJ: Brigatinib: Novel ALK inhibitor for non-small-cell lung cancer. Ann Pharmacother. 53:621–626. 2019. View Article : Google Scholar : PubMed/NCBI | |
Herden M and Waller CF: Alectinib. Recent Results Cancer Res. 211:247–256. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA, Riely GJ, Ou SI, Clancy JS, Li S, et al: ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol. 37:1370–1379. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yun MR, Kim DH, Kim SY, Joo HS, Lee YW, Choi HM, Park CW, Heo SG, Kang HN, Lee SS, et al: Repotrectinib exhibits potent antitumor activity in treatment-naïve and solvent-front-mutant ROS1-rearranged non-small cell lung cancer. Clin Cancer Res. 26:3287–3295. 2020. View Article : Google Scholar : PubMed/NCBI | |
Drilon A, Ou SI, Cho BC, Kim DW, Lee J, Lin JJ, Zhu VW, Ahn MJ, Camidge DR, Nguyen J, et al: Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov. 8:1227–1236. 2018. View Article : Google Scholar : PubMed/NCBI | |
Revannasiddaiah S, Thakur P, Bhardwaj B, Susheela SP and Madabhavi I: Pulmonary adenocarcinoma: Implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification. J Thorac Dis. 6 (Suppl 5):S502–S525. 2014.PubMed/NCBI | |
Lu Z, Wang X, Luo Y, Wei J, Zeng Z, Xiong Q, Cai J and Liu A: EGFR (p. G719A+L747V)/EML4-ALK co-alterations in lung adenocarcinoma with leptomeningeal metastasis responding to afatinib treatment: A case report. Onco Targets Ther. 14:2823–2828. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rybarczyk-Kasiuchnicz A, Ramlau R and Stencel K: Treatment of brain metastases of non-small cell lung carcinoma. Int J Mol Sci. 22:5932021. View Article : Google Scholar : PubMed/NCBI | |
Okada K, Araki M, Sakashita T, Ma B, Kanada R, Yanagitani N, Horiike A, Koike S, Oh-Hara T, Watanabe K, et al: Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine. 41:105–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin JJ, Zhu VW, Yoda S, Yeap BY, Schrock AB, Dagogo-Jack I, Jessop NA, Jiang GY, Le LP, Gowen K, et al: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J Clin Oncol. 36:1199–1206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dagogo-Jack I and Shaw AT: Crizotinib resistance: Implications for therapeutic strategies. Ann Oncol. 27 (Suppl 3):iii42–iii50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, et al: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 4:120ra172012. View Article : Google Scholar : PubMed/NCBI | |
Kunimasa K, Hirotsu Y, Kukita Y, Ueda Y, Sato Y, Kimura M, Otsuka T, Hamamoto Y, Tamiya M, Inoue T, et al: EML4-ALK fusion variant.3 and co-occurrent PIK3CA E542K mutation exhibiting primary resistance to three generations of ALK inhibitors. Cancer Genet. 256–257. 131–135. 2021. | |
Kwon JH, Kim KJ, Sung JH, Suh KJ, Lee JY, Kim JW, Kim SH, Lee JO, Kim JW, Kim YJ, et al: Afatinib overcomes pemetrexed-acquired resistance in non-small cell lung cancer cells harboring an EML4-ALK rearrangement. Cells. 8:15382019. View Article : Google Scholar : PubMed/NCBI | |
Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Meng Y, Wang K, Gao M, Du J, Wang J, Li Z, Zuo D and Wu Y: EML4-ALK G1202R mutation induces EMT and confers resistance to ceritinib in NSCLC cells via activation of STAT3/Slug signaling. Cell Signal. 92:1102642022. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Liu X, Qing Q, Sang Y, Feng C, Li X, Jiang L, Su P and Wang Y: EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells. Biochem Biophys Res Commun. 459:398–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
Voena C, Varesio LM, Zhang L, Menotti M, Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M, et al: Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget. 7:33316–33330. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Mello RA, Liu DJ, Aguiar PN and Tadokoro H: EGFR and EML4-ALK updated therapies in non-small cell lung cancer. Recent Pat Anticancer Drug Discov. 11:393–400. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Shi J, Yao M, Jin Y, Liu D, Liu W, Wang K and Jiang D: A rare double ALK fusion variant EML4-ALK and CDK15-ALK in lung adenocarcinoma and response to crizotinib: A case report. Medicine (Baltimore). 99:e226312020. View Article : Google Scholar : PubMed/NCBI | |
Laszlo A, Thotala D and Hallahan DE: Membrane phospholipids, EML4-ALK, and Hsp90 as novel targets in lung cancer treatment. Cancer J. 19:238–246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gelatti ACZ, Drilon A and Santini FC: Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer. 137:113–122. 2019. View Article : Google Scholar : PubMed/NCBI |