Hypoxia‑inducible factor‑1α: A critical target for inhibiting the metastasis of hepatocellular carcinoma (Review)
- Authors:
- Huan Chen
- Jing Chen
- Huixin Yuan
- Xiuhui Li
- Weihua Li
-
Affiliations: Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China - Published online on: June 28, 2022 https://doi.org/10.3892/ol.2022.13404
- Article Number: 284
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Liu X, Zhang X, Peng Z, Li C, Wang Z, Wang C, Deng Z, Wu B, Cui Y, Wang Z, et al: Deubiquitylase OTUD6B Governs pVHL stability in an enzyme-independent manner and suppresses hepatocellular carcinoma metastasis. Adv Sci (Weinh). 7:19020402020. View Article : Google Scholar : PubMed/NCBI | |
Forner A, Reig M and Bruix J: Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar | |
Wang X, Li L, Zhao K, Lin Q, Li H, Xue X, Ge W, He H, Liu D, Xie H, et al: A novel LncRNA HITT forms a regulatory loop with HIF-1α to modulate angiogenesis and tumor growth. Cell Death Differ. 27:1431–1446. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D and Xu Q: Hypoxia-inducible factors in hepatocellular carcinoma (Review). Oncol Rep. 43:3–15. 2020.PubMed/NCBI | |
Méndez-Blanco C, Fernández-Palanca P, Fondevila F, González-Gallego J and Mauriz JL: Prognostic and clinicopathological significance of hypoxia-inducible factors 1α and 2α in hepatocellular carcinoma: A systematic review with meta-analysis. Ther Adv Med Oncol. 13:17588359209870712021. View Article : Google Scholar | |
Mu H, Yu G, Li H, Wang M, Cui Y, Zhang T, Song T and Liu C: Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation. Cell Oncol (Dordr). 44:1151–1166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Dong J, Jia L, Zhao T, Lang M, Li Z, Lan C, Li X, Hao J, Wang H, et al: HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett. 393:113–124. 2017. View Article : Google Scholar | |
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, et al: HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY). 11:10839–10860. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Huang P, Zhao Z, Tang W and Xia J: HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell Physiol Biochem. 34:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Albadari N, Deng S and Li W: The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prabhakar NR and Semenza GL: Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang BH, Zheng JZ, Leung SW, Roe R and Semenza GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 272:19253–19260. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML and Bruick RK: FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466–1471. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen C and Lou T: Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget. 8:46691–46703. 2017. View Article : Google Scholar | |
Hur E, Kim HH, Choi SM, Kim JH, Yim S, Kwon HJ, Choi Y, Kim DK, Lee MO and Park H: Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol Pharmacol. 62:975–982. 2002. View Article : Google Scholar | |
Luo D, Wang Z and Wu J, Jiang C and Wu J: The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed Res Int. 2014:4092722014. View Article : Google Scholar | |
Mossenta M, Busato D, Dal Bo M and Toffoli G: Glucose metabolism and oxidative stress in hepatocellular carcinoma: Role and possible implications in novel therapeutic strategies. Cancers (Basel). 12:16682020. View Article : Google Scholar | |
Jiang BH, Rue E, Wang GL, Roe R and Semenza GL: Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271:17771–17778. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huang LE, Arany Z, Livingston DM and Bunn HF: Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 271:32253–32259. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fu C, An N, Liu J, A J, Zhang B, Liu M, Zhang Z, Fu L, Tian X, Wang D and Dong JT: The transcription factor ZFHX3 is crucial for the angiogenic function of hypoxia-inducible factor 1α in liver cancer cells. J Biol Chem. 295:7060–7074. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wiener CM, Booth G and Semenza GL: In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun. 225:485–488. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wang GL and Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bao MH and Wong CC: Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 10:17152021. View Article : Google Scholar : PubMed/NCBI | |
Yang YM, Kim SY and Seki E: Inflammation and liver cancer: Molecular mechanisms and therapeutic targets. Semin Liver Dis. 39:26–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei T, Yang J, Tang J, Wang J, Chen Y, et al: Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology. 67:1872–1889. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Fang Z, Gu H, Song R, Ye J, Li H, Wu Z, Zhou S, Li P, Cai X, et al: Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1α under hypoxia condition. Tumour Biol. 39:10104283177050342017. View Article : Google Scholar | |
Habas R, Kato Y and He X: Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell. 107:843–854. 2001. View Article : Google Scholar | |
Fang X, Zhang D, Zhao W, Gao L and Wang L: Dishevelled associated activator of morphogenesis (DAAM) facilitates invasion of hepatocellular carcinoma by upregulating hypoxia-inducible factor 1α (HIF-1α) Expression. Med Sci Monit. 26:e9246702020. View Article : Google Scholar | |
Ma H, Xie L, Zhang L, Yin X, Jiang H, Xie X, Chen R, Lu H and Ren Z: Activated hepatic stellate cells promote epithelial-to-mesenchymal transition in hepatocellular carcinoma through transglutaminase 2-induced pseudohypoxia. Commun Biol. 1:1682018. View Article : Google Scholar | |
Ientile R, Curro M, Caccamo D, Ferlazzo N, Gangemi C and Gugliandolo A: Transglutaminase 2 is involved in the inflammatory response through mechanisms linked to NF-kappa B/HIF-1 alpha pathways. Amino Acids. 27:1630–1631. 2015. | |
Kim DS, Choi YB, Han BG, Park SY, Jeon Y, Kim DH, Ahn ER, Shin JE, Lee BI, Lee H, et al: Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking. Oncogene. 30:4780–4790. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chu Q, Gu X, Zheng Q and Zhu H: Regulatory mechanism of HIF-1α and its role in liver diseases: A narrative review. Ann Transl Med. 10:1092022. View Article : Google Scholar : PubMed/NCBI | |
Makwana V, Ryan P, Patel B, Dukie SA and Rudrawar S: Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim Biophys Acta Gen Subj. 1863:1302–1317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu HT, Kuo YC, Hung JJ, Huang CH, Chen WY, Chou TY, Chen Y, Chen YJ, Chen YJ, Cheng WC, et al: K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat Commun. 7:136442016. View Article : Google Scholar : PubMed/NCBI | |
Wu KJ: The role of miRNA biogenesis and DDX17 in tumorigenesis and cancer stemness. Biomed J. 43:107–114. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M, Wei F, Wu J, Jiang J, Jia Y, et al: The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ. 27:695–710. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH, Kim TY, Juhnn YS, Kim SJ, Park JW, et al: STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Exp Mol Med. 40:479–485. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ and Huang MC: GATA3 interacts with and stabilizes HIF-1α to enhance cancer cell invasiveness. Oncogene. 36:4243–4252. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhang X, Lu Y, Wang X and Zhu L: Hypoxia inducible factor 1α in hepatocellular carcinoma with cirrhosis: Association with prognosis. Pathol Res Pract. 214:1987–1992. 2018. View Article : Google Scholar | |
Ding L, Chen XP and Wang HP: Expression and clinical significance of HIF-1a protein in hepatocellular carcinoma tissues. Zhonghua Gan Zang Bing Za Zhi. 12:656–659. 2004.(In Chinese). | |
Cheng W, Cheng Z, Yang Z, Xing D and Zhang M: Upregulation of hypoxia-inducible factor 1α mRNA expression was associated with poor prognosis in patients with hepatocellular carcinoma. Onco Targets Ther. 12:6285–6296. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cao S, Yang S, Wu C, Wang Y, Jiang J and Lu Z: Protein expression of hypoxia-inducible factor-1 alpha and hepatocellular carcinoma: A systematic review with meta-analysis. Clin Res Hepatol Gastroenterol. 38:598–603. 2014. View Article : Google Scholar | |
Qian Y, Li Y, Ge Y, Song W and Fan H: Elevated LncRNA TRERNA1 correlated with activation of HIF-1α predicts poor prognosis in hepatocellular carcinoma. Pathol Res Pract. 227:1536122021. View Article : Google Scholar | |
Ding ZN, Dong ZR, Chen ZQ, Yang YF, Yan LJ, Li HC, Liu KX, Yao CY, Yan YC, Yang CC and Li T: Effects of hypoxia-inducible factor-1α and hypoxia-inducible factor-2α overexpression on hepatocellular carcinoma survival: A systematic review with meta-analysis. J Gastroenterol Hepatol. 36:1487–1496. 2021. View Article : Google Scholar | |
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR and Timpson P: Recent advances in understanding the complexities of metastasis. F1000Res 7: F1000 Faculty Rev-1169. 2018. View Article : Google Scholar | |
Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng X, Zong Z, Sun X, Hua X and Li H: Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J Exp Clin Cancer Res. 37:2162018. View Article : Google Scholar : PubMed/NCBI | |
Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI | |
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pang L, Ng KT, Liu J, Yeung WO, Zhu J, Chiu TS, Liu H, Chen Z, Lo CM and Man K: Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett. 522:80–92. 2021. View Article : Google Scholar | |
He Q, Liu M, Huang W, Chen X, Zhang B, Zhang T, Wang Y, Liu D, Xie M, Ji X, et al: IL-1β-induced elevation of solute carrier family 7 member 11 promotes hepatocellular carcinoma metastasis through up-regulating programmed death ligand 1 and colony-stimulating factor 1. Hepatology. 74:3174–3193. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Wang H, Zou XJ, Zhang YX, Guo ZQ, Liu L, Wu DH and Zhang DY: Reciprocal regulation of HIF-1α and Uroplakin 1A promotes glycolysis and proliferation in Hepatocellular Carcinoma. J Cancer. 11:6737–6747. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI | |
He H, Chen T, Mo H, Chen S, Liu Q and Guo C: Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the proliferation and glycolysis of hepatocellular carcinoma cells by regulating the MAPK/ERK pathway. Biochem Biophys Res Commun. 533:886–892. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X and Sun B: HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res. 36:602017. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang Y, Dou C, Xu M, Sun L, Wang L, Yao B, Li Q, Yang W, Tu K and Liu Q: Hypoxia-induced up-regulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma. Theranostics. 8:4649–4663. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L, Dou C, Liu Q and Zheng X: Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling. Cell Physiol Biochem. 44:1856–1868. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, et al: Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 13:1082013. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Min Z, Zhou Zhihang, Linhong M, Tao R, Yan L and Song H: Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer. Exp Cell Res. 385:1116492019. View Article : Google Scholar : PubMed/NCBI | |
Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, Chan LK, Cheung TT, Chok KS, Chan ACY, et al: SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut. 66:2149–2159. 2017. View Article : Google Scholar | |
Rankin EB and Giaccia AJ: Hypoxic control of metastasis. Science. 352:175–180. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Cao X: Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl). 94:509–522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Kiss M, Vande Walle L, Saavedra PHV, Lebegge E, Van Damme H, Murgaski A, Qian J, Ehling M, Pretto S, Bolli E, et al: IL1β promotes immune suppression in the tumor microenvironment independent of the inflammasome and gasdermin D. Cancer Immunol Res. 9:309–323. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Xie K, Lan T, Xu L, Chen X, Li X, Liao M, Li J, Huang J, Zeng Y and Wu H: TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin. Cell Death Differ. 27:1355–1368. 2020. View Article : Google Scholar : PubMed/NCBI | |
Venhuizen JH, Jacobs FJC, Span PN and Zegers MM: P120 and E-cadherin: Double-edged swords in tumor metastasis. Semin Cancer Biol. 60:107–120. 2020. View Article : Google Scholar | |
Na TY, Schecterson L, Mendonsa AM and Gumbiner BM: The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci USA. 117:5931–5937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, et al: VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 27:157–169. 2007. View Article : Google Scholar | |
Wu Y, Zhang J, Zhang X, Zhou H, Liu G and Li Q: Cancer stem cells: A potential breakthrough in HCC-targeted therapy. Front Pharmacol. 11:1982020. View Article : Google Scholar | |
Liu YC, Yeh CT and Lin KH: Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar | |
Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar | |
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS and Chen GG: Cancer stem cells in hepatocellular carcinoma: An overview and promising therapeutic strategies. Ther Adv Med Oncol. 10:17588359188162872018. View Article : Google Scholar | |
Lee TK, Guan XY and Ma S: Cancer stem cells in hepatocellular carcinoma-from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 19:26–44. 2022. View Article : Google Scholar | |
Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21:9652016. View Article : Google Scholar | |
Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA and Cheng B: Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget. 7:5754–5768. 2016. View Article : Google Scholar | |
Liu LP, Ho RL, Chen GG and Lai PB: Sorafenib inhibits hypoxia-inducible factor-1α synthesis: Implications for antiangiogenic activity in hepatocellular carcinoma. Clin Cancer Res. 18:5662–5671. 2012. View Article : Google Scholar : PubMed/NCBI | |
Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J and Mauriz JL: Sorafenib resistance in hepatocarcinoma: Role of hypoxia-inducible factors. Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar | |
Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, Liu H, Tian L, Fang X, Meng X, et al: Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology. 57:1847–1857. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang D, Li T, Wang CZ, Tan YX, Ding J, et al: ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol. 65:314–324. 2016. View Article : Google Scholar | |
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, et al: Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 117:1518–1528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, et al: Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 39:242020. View Article : Google Scholar : PubMed/NCBI | |
Song DS, Nam SW, Bae SH, Kim JD, Jang JW, Song MJ, Lee SW, Kim HY, Lee YJ, Chun HJ, et al: Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma. World J Gastroenterol. 21:2395–2404. 2015. View Article : Google Scholar | |
Liu K, Min XL, Peng J, Yang K, Yang L and Zhang XM: The changes of HIF-1α and VEGF expression After TACE in patients with hepatocellular carcinoma. J Clin Med Res. 8:297–302. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Wang L, Chen J, Bai M, Zhou C, Liu S and Lin Q: Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery. Int J Oncol. 48:2144–2154. 2016. View Article : Google Scholar | |
Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sangro B, Sarobe P, Hervás-Stubbs S and Melero I: Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar | |
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, et al: β-catenin activation promotes immune escape and resistance to Anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9:1124–1141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalantari Khandani N, Ghahremanloo A and Hashemy SI: Role of tumor microenvironment in the regulation of PD-L1: A novel role in resistance to cancer immunotherapy. J Cell Physiol. 235:6496–6506. 2020. View Article : Google Scholar | |
Deng Z, Teng YJ, Zhou Q, Ouyang ZG, Hu YX, Long HP, Hu MJ, Mei S, Lin FX, Dai XJ, et al: Shuyu pills inhibit immune escape and enhance chemosensitization in hepatocellular carcinoma. World J Gastrointest Oncol. 13:1725–1740. 2021. View Article : Google Scholar | |
Chen P, Duan X, Li X, Li J, Ba Q and Wang H: HIPK2 suppresses tumor growth and progression of hepatocellular carcinoma through promoting the degradation of HIF-1α. Oncogene. 39:2863–2876. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Ling S, Shan Q, Ye Q, Zhan Q, Jiang G, Zhuo J, Pan B, Wen X, Feng T, et al: Self-activated cascade-responsive sorafenib and USP22 shRNA Co-delivery system for synergetic hepatocellular carcinoma therapy. Adv Sci (Weinh). 8:20030422021. View Article : Google Scholar : PubMed/NCBI | |
Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S, He X, Ma J, Xiang J, Jiang G, et al: USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut. 69:1322–1334. 2020. View Article : Google Scholar | |
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D and Baranowska-Bosiacka I: Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB Activation: A review of the molecular mechanisms. Int J Mol Sci. 22:107012021. View Article : Google Scholar | |
Jiang Y, Zhu Y, Wang X, Gong J, Hu C, Guo B, Zhu B and Li Y: Temporal regulation of HIF-1 and NF-κB in hypoxic hepatocarcinoma cells. Oncotarget. 6:9409–9419. 2015. View Article : Google Scholar | |
Hu L, Zeng Z, Xia Q, Liu Z, Feng X, Chen J, Huang M, Chen L, Fang Z, Liu Q, et al: Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway. Life Sci. 239:1169662019. View Article : Google Scholar | |
Su Q, Fan M, Wang J, Ullah A, Ghauri MA, Dai B, Zhan Y, Zhang D and Zhang Y: Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis. 10:9392019. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wu J, Shi S, Chen Y, Wang H, Fan H and Wang S: Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives. Carbohydr Polym. 152:241–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Wan D, Yi F and Luan L: Purification, preliminary characterization and hepatoprotective effects of polysaccharides from dandelion root. Molecules. 22:14092017. View Article : Google Scholar | |
Ren F, Wu K, Yang Y, Yang Y, Wang Y and Li J: Dandelion polysaccharide exerts anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1α expression. Front Pharmacol. 11:4602020. View Article : Google Scholar | |
Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y and Shen H: Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 17:1202018. View Article : Google Scholar : PubMed/NCBI |