Impact on breast cancer susceptibility and clinicopathological traits of common genetic polymorphisms in TP53, MDM2 and ATM genes in Sardinian women
- Authors:
- Matteo Floris
- Giovanna Pira
- Paolo Castiglia
- Maria Laura Idda
- Maristella Steri
- Maria Rosaria De Miglio
- Andrea Piana
- Andrea Cossu
- Antonio Azara
- Caterina Arru
- Giovanna Deiana
- Carlo Putzu
- Valeria Sanna
- Ciriaco Carru
- Antonello Serra
- Marco Bisail
- Maria Rosaria Muroni
-
Affiliations: Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy, Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy, Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy, Unit of Occupational Medicine, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy, Lega Italiana per la Lotta contro i Tumori, Sassari, I-07100 Sardinia, Italy - Published online on: August 8, 2022 https://doi.org/10.3892/ol.2022.13451
- Article Number: 331
-
Copyright: © Floris et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yaffe MJ, Mittmann N, Alagoz O, Trentham-Dietz A, Tosteson AN and Stout NK: The effect of mammography screening regimen on incidence-based breast cancer mortality. J Med Screen. 25:197–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alberg AJ, Lam AP and Helzlsouer KJ: Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol. 11:435–441. 1999. View Article : Google Scholar | |
Momenimovahed Z and Salehiniya H: Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 11:151–164. 2019.PubMed/NCBI | |
Wu MH, Chou YC, Yu JC, Yu CP, Wu CC, Chu CM, Yang T, Lai CH, Hsieh CY, You SL, et al: Hormonal and body-size factors in relation to breast cancer risk: A prospective study of 11,889 women in a low-incidence area. Ann Epidemiol. 16:223–229. 2006. View Article : Google Scholar | |
Dai Q, Liu B and Du Y: Meta-analysis of the risk factors of breast cancer concerning reproductive factors and oral contraceptive use. Front Med China. 3:452–458. 2009. View Article : Google Scholar | |
Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V and Grech G: Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 37:12941–12957. 2016. View Article : Google Scholar | |
Tamakoshi K, Yatsuya H, Wakai K, Suzuki S, Nishio K, Lin Y, Niwa Y, Kondo T, Yamamoto A, Tokudome S, et al: Impact of menstrual and reproductive factors on breast cancer risk in Japan: Results of the JACC study. Cancer Sci. 96:57–62. 2005. View Article : Google Scholar | |
Daly AA, Rolph R, Cutress RI and Copson ER: A Review of modifiable risk factors in young women for the prevention of breast cancer. Breast cancer (Dove Med Press). 13:241–257. 2021.PubMed/NCBI | |
Uva P, Cossu-Rocca P, Loi F, Pira G, Murgia L, Orrù S, Floris M, Muroni MR, Sanges F, Carru C, et al: miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: Different expression profile in basal-like versus non-basal-like phenotypes. Int J Med Sci. 15:536–548. 2018. View Article : Google Scholar | |
Perou CM, Sørile T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dalivandan ST, Plummer J and Gayther SA: Risks and Function of breast cancer susceptibility alleles. Cancers (Basel). 13:39532021. View Article : Google Scholar : PubMed/NCBI | |
Dumitrescu RG and Cotarla I: Understanding breast cancer risk-where do we stand in 2005? J Cell Mol Med. 9:208–221. 2005. View Article : Google Scholar : PubMed/NCBI | |
Deng N, Zhou H, Fan H and Yuan Y: Single nucleotide polymorphisms and cancer susceptibility. Oncotarget. 8:110635–110649. 2017. View Article : Google Scholar | |
Palomba G, Loi A, Porcu E, Cossu A, Zara I, Budroni M, Dei M, Lai S, Mulas A, Olmeo N, et al: Genome-wide association study of susceptibility loci for breast cancer in Sardinian population. BMC Cancer. 15:2015. View Article : Google Scholar | |
Narod SA: Genetic variants associated with breast-cancer risk. Lancet Oncol. 12:415–416. 2011. View Article : Google Scholar | |
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI | |
Castiglia P, Sanna V, Azara A, De Miglio MR, Murgia L, Pira G, Sanges F, Fancellu A, Carru C, Bisail M and Muroni MR: Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in breast cancer: A sardinian preliminary case-control study. Int J Med Sci. 16:1089–1095. 2019. View Article : Google Scholar | |
Floris M, Sanna D, Castiglia P, Putzu C, Sanna V, Pazzola A, De Miglio MR, Sanges F, Pira G, Azara A, et al: MTHFR, XRCC1 and OGG1 genetic polymorphisms in breast cancer: A case-control study in a population from North Sardinia. BMC Cancer. 20:2342020. View Article : Google Scholar : PubMed/NCBI | |
Pilato B, Martinucci M, Danza K, Pinto R, Petriella D, Lacalamita R, Bruno M, Lambo R, D'Amico C, Paradiso A and Tommasi S: Mutations and polymorphic BRCA variants transmission in breast cancer familial members. Breast Cancer Res Treat. 125:651–657. 2011. View Article : Google Scholar | |
Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF and Soussi T: Analysis of TP53 mutation status in human cancer cell lines: A reassessment. Hum Mutat. 35:756–765. 2014. View Article : Google Scholar | |
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al: COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39:(Database Issue). D945–D950. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harris CC and Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 329:1318–1327. 1993. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004. View Article : Google Scholar : PubMed/NCBI | |
Marchenko ND, Zaika A and Moll UM: Death signal-induced localization of p53 protein to mitochondria: A potential role in apoptotic signaling. J Biol Chem. 275:16202–16212. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD and Green DR: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 309:1732–1735. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, et al: A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 119:591–602. 2004. View Article : Google Scholar | |
Miedl H, Lebhard J, Ehart L and Schreiber M: Association of the MDM2 SNP285 and SNP309 genetic variants with the risk, age at onset and prognosis of breast cancer in Central European women: A hospital-based case-control study. Int J Mol Sci. 20:5092019. View Article : Google Scholar | |
Estiar MA and Mehdipour P: ATM in breast and brain tumors: A comprehensive review. Cancer Biol Med. 15:210–227. 2018. View Article : Google Scholar : PubMed/NCBI | |
Børresen-Dale AL: TP53 and breast cancer. Hum Mutat. 21:292–300. 2003. View Article : Google Scholar | |
Grochola LF, Zeron-Medina J, Mériaux S and Bond GL: Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol. 2:a0010322010. View Article : Google Scholar | |
Whibley C, Pharoah PD and Hollstein M: p53 polymorphisms: Cancer implications. Nat Rev Cancer. 9:95–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vannini I, Zoli W, Tesei A, Rosetti M, Sansone P, Storci G, Passardi A, Massa I, Ricci M, Gusolfino D, et al: Role of p53 codon 72 arginine allele in cell survival in vitro and in the clinical outcome of patients with advanced breast cancer. Tumor Biol. 29:145–151. 2008. View Article : Google Scholar | |
Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, Iwata H, Takahashi S, Yamashita H and Fujii Y: Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res. 9:R342007. View Article : Google Scholar : PubMed/NCBI | |
Lazar V, Hazard F, Bertin F, Janin N, Bellet D and Bressac B: Simple sequence repeat polymorphism within the p53 gene. Oncogene. 8:1703–1705. 1993.PubMed/NCBI | |
Peller S, Kopilova Y, Slutzki S, Halevy A, Kvitko K and Rotter V: A Novel Polymorphism in Intron 6 of the Human p53 Gene: A possible association with cancer predisposition and susceptibility. DNA Cell Biol. 14:983–990. 1995. View Article : Google Scholar | |
Schmidt MK, Reincke S, Broeks A, Braaf LM, Hogervorst FB, Tollenaar RA, Johnson N, Fletcher O, Peto J, Tommiska J, et al: Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium. Cancer Res. 67:9584–9590. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves ML, Borja SM, Cordeiro JA, Saddi VA, Ayres FM, Vilanova-Costa CA and Silva AM: Association of the TP53 codon 72 polymorphism and breast cancer risk: A meta-analysis. Springerplus. 3:7492014. View Article : Google Scholar | |
Cheng H, Ma B, Jiang R, Wang W, Guo H, Shen N, Li D, Zhao Q, Wang R, Yi P, et al: Individual and combined effects of MDM2 SNP309 and TP53 Arg72Pro on breast cancer risk: An updated meta-analysis. Mol Biol Rep. 39:9265–9274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dumont P, Leu JIJ, Della Pietra AC III, George DL and Murphy M: The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 33:357–365. 2003. View Article : Google Scholar | |
Thomas M, Kalita A, Labrecque S, Pim D, Banks L and Matlashewski G: Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 19:1092–1100. 1999. View Article : Google Scholar | |
Pim D and Banks L: P53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer. 108:196–199. 2004. View Article : Google Scholar : PubMed/NCBI | |
Siddique M and Sabapathy K: Trp53-dependent DNA-repair is affected by the codon 72 polymorphism. Oncogene. 25:3489–3500. 2006. View Article : Google Scholar : PubMed/NCBI | |
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar | |
Zhang Y and Lozano G: P53: Multiple facets of a rubik's cube. Annu Rev Cancer Biol. 1:185–201. 2017. View Article : Google Scholar | |
Walerych D, Napoli M, Collavin L and Del Sal G: The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 33:2007–2017. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cossu-Rocca P, Orrù S, Muroni MR, Sanges F, Sotgiu G, Ena S, Pira G, Murgia L, Manca A, Uras MG, et al: Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS One. 10:e01417632015. View Article : Google Scholar : PubMed/NCBI | |
Huun J, Gansmo LB, Mannsåker B, Iversen GT, Sommerfelt-Pettersen J, Øvrebø JI, Lønning PE and Knappskog S: The functional roles of the MDM2 splice variants P2-MDM2-10 and MDM2-∆5 in breast cancer cells. Transl Oncol. 10:806–817. 2017. View Article : Google Scholar | |
Bond G, Hu W and Levine A: MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets. 5:3–8. 2005. View Article : Google Scholar : PubMed/NCBI | |
Isakova J, Talaibekova E, Aldasheva N, Vinnikov D and Aldashev A: The association of polymorphic markers Arg399Gln of XRCC1 gene, Arg72Pro of TP53 gene and T309G of MDM2 gene with breast cancer in Kyrgyz females. BMC Cancer. 17:7582017. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Kang AJ, Lin S, Dai ZJ, Zhang SQ, Liu D, Zhao Y, Yang PT, Wang M and Wang XJ: Association between MDM2 rs 2279744 polymorphism and breast cancer susceptibility: A meta-analysis based on 9,788 cases and 11,195 controls. Ther Clin Risk Manag. 10:269–277. 2014.PubMed/NCBI | |
Yilmaz M, Tas A, Donmez G, Kacan T and Silig Y: Significant association of the MDM2 T309G polymorphism with breast cancer risk in a Turkish Population. Asian Pac J Cancer Prev. 19:1059–1062. 2018.PubMed/NCBI | |
Wilkening S, Bermejo JL and Hemminki K: MDM2 SNP309 and cancer risk: A combined analysis. Carcinogenesis. 28:2262–2267. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K, et al: Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 336:577–580. 1988. View Article : Google Scholar : PubMed/NCBI | |
Kruse JP and Gu W: SnapShot: p53 posttranslational modifications. Cell. 133:930–30.e1. 2008. View Article : Google Scholar | |
Chen L, Gilkes DM, Pan Y, Lane WS and Chen J: ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24:3411–3422. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Paull TT: Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI | |
González-Hormazábal P, Bravo T, Blanco R, Valenzuela CY, Gómez F, Waugh E, Peralta O, Ortuzar W, Reyes JM and Jara L: Association of common ATM variants with familial breast cancer in a South American population. BMC Cancer. 8:1172008. View Article : Google Scholar | |
Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Nieminen P and Winqvist R: Association of common ATM polymorphism with bilateral breast cancer. Int J Cancer. 116:69–72. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Yin XX, Qin J, Wang W and He XF: Association between the TP53 polymorphisms and breast cancer risk: An updated meta-analysis. Front Genet. 13:8074662022. View Article : Google Scholar | |
Diakite B, Kassogue Y, Dolo G, Wang J, Neuschler E, Kassogue O, Keita ML, Traore CB, Kamate B, Dembele E, et al: p.Arg72Pro polymorphism of P53 and breast cancer risk: A meta-analysis of case-control studies. BMC Med Genet. 21:2062020. View Article : Google Scholar | |
Diakite B, Kassogue Y, Dolo G, Kassogue O, Keita ML, Joyce B, Neuschler E, Wang J, Musa J, Traore CB, et al: Association of PIN3 16-bp duplication polymorphism of TP53 with breast cancer risk in Mali and a meta-analysis. BMC Med Genet. 21:1422020. View Article : Google Scholar | |
Jalilvand A, Yari K, Aznab M, Rahimi Z, Salahshouri Far I and Mohammadi P: A case-control study on the SNP309T → G and 40-bp Del1518 of the MDM2 gene and a systematic review for MDM2 polymorphisms in the patients with breast cancer. J Clin Lab Anal. 34:e235292020. View Article : Google Scholar | |
Vodolazhsky DI, Mayakovskaya AV, Kubyshkin AV, Aliev KA and Fomochkina II: Clinical significance of gene polymorphisms for hereditary predisposition to breast and ovarian cancer (review of literature). Klin Lab Diagn. 66:760–767. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chiang CWK, Marcus JH, Sidore C, Biddanda A, Al-Asadi H, Zoledziewska M, Pitzalis M, Busonero F, Maschio A, Pistis G, et al: Genomic history of the Sardinian population. Nat Genet. 50:1426–1434. 2018. View Article : Google Scholar | |
Osorio A, Martínez-Delgado B, Pollán M, Cuadros M, Urioste M, Torrenteras C, Melchor L, Díez O, De La Hoya M, Velasco E, et al: A haplotype containing the p53 polymorphisms Ins16bp and Arg72Pro modifies cancer risk in BRCA2 mutation carriers. Hum Mutat. 27:242–248. 2006. View Article : Google Scholar | |
González JR, Armengol L, Solé X, Guinó E, Mercader JM, Estivill X and Moreno V: SNPassoc: An R package to perform whole genome association studies. Bioinformatics. 23:644–645. 2007. View Article : Google Scholar | |
Schlesselman JJ: Basic methods of analysis. Case-Control Studies: Design, Conduct, Analysis: Design, Conduct, Analysis. Oxford University Press; Oxford, UK: pp. 1761982 | |
1000 Genomes Project Consortium, . Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, et al: A global reference for human genetic variation. Nat. 526:68–74. 2015. View Article : Google Scholar | |
De Vecchi G, Verderio P, Pizzamiglio S, Manoukian S, Bernard L, Pensotti V, Volorio S, Ravagnani F, Radice P and Peterlongo P: The p53 Arg72Pro and Ins16bp polymorphisms and their haplotypes are not associated with breast cancer risk in BRCA-mutation negative familial cases. Cancer Detect Prev. 32:140–143. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gohari-Lasaki S, Gharesouran J, Ghojazadeh M, Montazeri V and Mohaddes Ardebili SM: Lack of influence of TP53 Arg72Pro and 16bp duplication polymorphisms on risk of breast cancer in iran. Asian Pacific J Cancer Prev. 16:2971–2974. 2015. View Article : Google Scholar | |
Eskandari-Nasab E, Hashemi M, Amininia S, Ebrahimi M, Rezaei M and Hashemi SM: Effect of TP53 16-bp and β-TrCP 9-bp INS/DEL polymorphisms in relation to risk of breast cancer. Gene. 568:181–185. 2015. View Article : Google Scholar : PubMed/NCBI | |
Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R and Schmitt F: Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer. 8:322008. View Article : Google Scholar : PubMed/NCBI | |
Ayoubi SE, Elkarroumi M, El Khachibi M, Hassani Idrissi H, Ayoubi H, Ennachit S, Arazzakou M and Nadifi S: The 72Pro variant of the tumor protein 53 is associated with an increased breast cancer risk in the Moroccan Population. Pathobiology. 85:247–253. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Li X, Qu X, He Y, Ring BZ, Song E and Su L: Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: A meta-analysis. Carcinogenesis. 31:643–647. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akkiprik M, Sonmez O, Gulluoglu BM, Caglar HB, Kaya H, Demirkalem P, Abacioglu U, Sengoz M, Sav A and Ozer A: Analysis of p53 gene polymorphisms and protein over-expression in patients with breast cancer. Pathol Oncol Res. 15:359–368. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hrstka R, Coates PJ and Vojtesek B: Polymorphisms in p53 and the p53 pathway: Roles in cancer susceptibility and response to treatment. J Cell Mol Med. 13:440–453. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hao W, Xu X, Shi H, Zhang C and Chen X: No association of TP53 codon 72 and intron 3 16-bp duplication polymorphisms with breast cancer risk in Chinese Han women: New evidence from a population-based case-control investigation. Eur J Med Res. 23:472018. View Article : Google Scholar : PubMed/NCBI | |
Morten BC, Chiu S, Oldmeadow C, Lubinski J, Scott RJ and Avery-Kiejda KA: The intron 3 16 bp duplication polymorphism of p53 (rs17878362) is not associated with increased risk of developing triple-negative breast cancer. Breast Cancer Res Treat. 173:727–733. 2019. View Article : Google Scholar | |
Campbell IG, Eccles DM, Dunn B, Davis M and Leake V: P53 polymorphism in ovarian and breast cancer. Lancet. 347:393–394. 1996. View Article : Google Scholar | |
Mavridou D, Gornall R, Campbell IG and Eccles DM: TP53 intron 6 polymorphism and the risk of ovarian and breast cancer. Br J Cancer. 77:676–677. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dahabreh IJ, Schmid CH, Lau J, Varvarigou V, Murray S and Trikalinos TA: Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: A systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. Am J Epidemiol. 177:1317–1325. 2013. View Article : Google Scholar | |
Liu J, Tang X, Li M, Lu C, Shi J, Zhou L, Yuan Q and Yang M: Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res Treat. 140:151–157. 2013. View Article : Google Scholar | |
Sharma S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR, Bansal D and Gupta A: TP53 polymorphisms in sporadic North Indian breast cancer patients. Asian Pacific J Cancer Prev. 15:6871–6879. 2014. View Article : Google Scholar | |
Vymetalkova V, Soucek P, Kunicka T, Jiraskova K, Brynychova V, Pardini B, Novosadova V, Polivkova Z, Kubackova K, Kozevnikovova R, et al: Genotype and haplotype analyses of TP53 gene in breast cancer patients: Association with risk and clinical outcomes. PLoS One. 10:e01344632015. View Article : Google Scholar : PubMed/NCBI | |
Perriaud L, Marcel V, Sagne C, Favaudon V, Guédin A, De Rache A, Guetta C, Hamon F, Teulade-Fichou MP, Hainaut P, et al: Impact of G-quadruplex structures and intronic polymorphisms rs17878362 and rs1642785 on basal and ionizing radiation-induced expression of alternative p53 transcripts. Carcinogenesis. 35:2706–2715. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lai MY, Chang HC, Li HP, Ku CK, Chen PJ, Sheu JC, Huang GT, Lee PH and Chen DS: Splicing mutations of the p53 gene in human hepatocellular carcinoma. Cancer Res. 53:1653–1656. 1993.PubMed/NCBI | |
Takahashi T, D'Amico D, Chiba I, Buchhagen DL and Minna JD: Identification of intronic point mutations as an alternative mechanism for p53 inactivation in lung cancer. J Clin Invest. 86:363–369. 1990. View Article : Google Scholar | |
Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutiérrez-Enríquez S, Hall J, Guino E, Peinado MA, Capella G and Canzian F: A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene. 23:1954–1956. 2004. View Article : Google Scholar : PubMed/NCBI | |
Biroš E, Kalina I, Kohút A, Štubňa J and Šalagovič J: Germ line polymorphisms of the tumor suppressor gene p53 and lung cancer. Lung Cancer. 31:157–162. 2001. View Article : Google Scholar | |
Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H, Bartel F, Taubert H, Wuerl P, Hait W, et al: MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 66:5104–5110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jones JS, Gu X, Lynch PM, Rodriguez-Bigas M, Amos CI and Frazier ML: ATM Polymorphism and hereditary nonpolyposis colorectal cancer (HNPCC) age of onset (United States). Cancer Causes Control. 16:749–753. 2005. View Article : Google Scholar | |
Thorstenson YR, Shen P, Tusher VG, Wayne TL, Davis RW, Chu G and Oefner PJ: Global analysis of ATM polymorphism reveals significant functional constraint. Am J Hum Genet. 69:396–412. 2001. View Article : Google Scholar | |
Tommiska J, Jansen L, Kilpivaara O, Edvardsen H, Kristensen V, Tamminen A, Aittomäki K, Blomqvist C, Børresen-Dale AL and Nevanlinna H: ATM variants and cancer risk in breast cancer patients from Southern Finland. BMC Cancer. 6:2092006. View Article : Google Scholar : PubMed/NCBI | |
Einarsdóttir K, Rosenberg LU, Humphreys K, Bonnard C, Palmgren J, Li Y, Li Y, Chia KS, Liu ET, Hall P, et al: Comprehensive analysis of the ATM, CHEK2 and ERBB2 genes in relation to breast tumour characteristics and survival: A population-based case-control and follow-up study. Breast Cancer Res. 8:R672006. View Article : Google Scholar | |
Lavin MF, Birrell G, Chen P, Kozlov S, Scott S and Gueven N: ATM signaling and genomic stability in response to DNA damage. Mutat Res. 569:123–132. 2005. View Article : Google Scholar : PubMed/NCBI | |
Veronesi U, Goldhirsch A, Boyle P, Orecchia R and Viale G: Breast Cancer. Discov Med. 5:271–277. 2005.PubMed/NCBI | |
Collaborative Group on Hormonal Factors in Breast Cancer, . Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet. 360:187–195. 2002. View Article : Google Scholar | |
World Health Organization (WHO), . IARC Monographs on the Identification of Carcinogenic Hazards to Humans, List of classifications by cancer sites with sufficient or limited evidence in humans. IARC Monographs Volumes 1–132. https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdfFebruary 1–2022 | |
Horn J, Åsvold BO, Opdahl S, Tretli S and Vatten LJ: Reproductive factors and the risk of breast cancer in old age: A Norwegian cohort study. Breast Cancer Res Treat. 139:237–243. 2013. View Article : Google Scholar | |
Lagerlund M, Sontrop JM and Zackrisson S: Do reproductive and hormonal risk factors for breast cancer associate with attendance at mammography screening? Cancer Causes Control. 24:1687–1694. 2013. View Article : Google Scholar | |
Fioretti F, Tavani A, Bosetti C, La Vecchia C, Negri E, Barbone F, Talamini R and Franceschi S: Risk factors for breast cancer in nulliparous women. Br J Cancer. 79:1923–1928. 1999. View Article : Google Scholar : PubMed/NCBI | |
Akram M, Iqbal M, Daniyal M and Khan AU: Awareness and current knowledge of breast cancer. Biol Res. 50:332017. View Article : Google Scholar : PubMed/NCBI | |
Trentham-Dietz A, Newcomb PA, Egan KM, Titus-Ernstoff L, Baron JA, Storer BE, Stampfer M and Willett WC: Weight change and risk of postmenopausal breast cancer (United States). Cancer Causes Control. 11:533–542. 2000. View Article : Google Scholar | |
Miller ER, Wilson C, Chapman J, Flight I, Nguyen AM, Fletcher C and Ramsey I: Connecting the dots between breast cancer, obesity and alcohol consumption in middle-aged women: Ecological and case control studies. BMC Public Health. 18:4602018. View Article : Google Scholar : PubMed/NCBI | |
Alegre MM, Knowles MH, Robison RA and O'Neill KL: Mechanics behind breast cancer prevention-focus on obesity, exercise and dietary fat. Asian Pacific J Cancer Prev. 14:2207–2212. 2013. View Article : Google Scholar | |
Zeng H, Irwin ML, Lu L, Risch H, Mayne S, Mu L, Deng Q, Scarampi L, Mitidieri M, Katsaros D and Yu H: Physical activity and breast cancer survival: An epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res Treat. 133:127–135. 2012. View Article : Google Scholar | |
Jardé T, Perrier S, Vasson MP and Caldefie-Chézet F: Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 47:33–43. 2011. View Article : Google Scholar | |
Siiteri PK: Adipose tissue as a source of hormones. Am J Clin Nutr. 45 (1 Suppl):S277–S282. 1987. View Article : Google Scholar | |
Zimta AA, Tigu AB, Muntean M, Cenariu D, Slaby O and Berindan-Neagoe I: Molecular links between central obesity and breast cancer. Int J Mol Sci. 20:53642019. View Article : Google Scholar | |
Lynch BM, Neilson HK and Friedenreich CM: Physical activity and breast cancer prevention. Recent Results Cancer Res. 186:13–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang D and Kang S: Physical activity and risk of breast cancer: A meta-analysis of prospective studies. Breast Cancer Res Treat. 137:869–882. 2013. View Article : Google Scholar | |
Lee J: A meta-analysis of the association between physical activity and breast cancer mortality. Cancer Nurs. 42:271–285. 2019. View Article : Google Scholar : PubMed/NCBI | |
McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N and Ockene J; Women's Health Initiative Cohort Study, : Recreational physical activity and the risk of breast cancer in postmenopausal women: The women's health initiative cohort study. JAMA. 290:1331–1336. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lagerros YT, Hsieh SF and Hsieh CC: Physical activity in adolescence and young adulthood and breast cancer risk: A quantitative review. Eur J Cancer Prev. 13:5–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hankinson SE, Colditz GA and Willett WC: Towards an integrated model for breast cancer etiology: The lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 6:213–218. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW, et al: Benign breast disease and the risk of breast cancer. N Engl J Med. 353:229–237. 2005. View Article : Google Scholar : PubMed/NCBI | |
Key TJ, Verkasalo PK and Banks E: Epidemiology of breast cancer. Lancet Oncol. 2:133–140. 2001. View Article : Google Scholar | |
Collaborative Group on Hormonal Factors in Breast Cancer, . Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 358:1389–1399. 2001. View Article : Google Scholar | |
McPherson K, Steel CM and Dixon JM: ABC of breast diseases: Breast cancer-Epidemiology, risk factors, and genetics. BMJ. 321:624–628. 2000. View Article : Google Scholar : PubMed/NCBI |