1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rottenberg S, Disler C and Perego P: The
rediscovery of platinum-based cancer therapy. Nat Rev Cancer.
21:37–50. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kuroki L and Guntupalli SR: Treatment of
epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Matulonis UA, Sood AK, Fallowfield L,
Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis
Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shi L, Yu H, Zhang W, Li L and Wang Q:
Establishment and biological characteristics of a
platinum-resistance nude mouse model in epithelial ovarian cancer.
Zhonghua Fu Chan Ke Za Zhi. 49:523–530. 2014.(In Chinese).
PubMed/NCBI
|
6
|
Bost F, Diarra-Mehrpour M and Martin JP:
Inter-alpha-trypsin inhibitor proteoglycan family-a group of
proteins binding and stabilizing the extracellular matrix. Eur J
Biochem. 252:339–346. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhuo L, Hascall VC and Kimata K:
Inter-alpha-trypsin inhibitor, a covalent
protein-glycosaminoglycan-protein complex. J Biol Chem.
279:38079–38082. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hamm A, Veeck J, Bektas N, Wild PJ,
Hartmann A, Heindrichs U, Kristiansen G, Werbowetski-Ogilvie T, Del
Maestro R, Knuechel R and Dahl E: Frequent expression loss of
Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple
human solid tumors: A systematic expression analysis. BMC Cancer.
8:252008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kopylov AT, Stepanov AA, Malsagova KA,
Soni D, Kushlinsky NE, Enikeev DV, Potoldykova NV, Lisitsa AV and
Kaysheva AL: Revelation of proteomic indicators for colorectal
cancer in initial stages of development. Molecules. 25:6192020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu X, Zheng W, Wang W, Shen H, Liu L, Lou
W, Wang X and Yang P: A new panel of pancreatic cancer biomarkers
discovered using a mass spectrometry-based pipeline. Br J Cancer.
118:e152018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Peng H, Pan S, Yan Y, Brand RE, Petersen
GM, Chari ST, Lai LA, Eng JK, Brentnall TA and Chen R: Systemic
proteome alterations linked to early stage pancreatic cancer in
diabetic patients. Cancers (Basel). 12:15342020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chong PK, Lee H, Zhou J, Liu SC, Loh MC,
Wang TT, Chan SP, Smoot DT, Ashktorab H, So JB, et al: ITIH3 is a
potential biomarker for early detection of gastric cancer. J
Proteome Res. 9:3671–3679. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dufresne J, Bowden P, Thavarajah T,
Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT,
Phan M, Mohamed N, et al: The plasma peptides of breast versus
ovarian cancer. Clin Proteomics. 16:432019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ivancic MM, Huttlin EL, Chen X, Pleiman
JK, Irving AA, Hegeman AD, Dove WF and Sussman MR: Candidate serum
biomarkers for early intestinal cancer using 15N metabolic labeling
and quantitative proteomics in the ApcMin/+ mouse. J Proteome Res.
12:4152–4166. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Thavarajah T, Dos Santos CC, Slutsky AS,
Marshall JC, Bowden P, Romaschin A and Marshall JG: The plasma
peptides of sepsis. Clin Proteomics. 17:262020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng Y, Tang Y, Mao Y, Liu Y, Yao D, Yang
L, Garson K, Vanderhyden BC and Wang Q: PAX2 promotes epithelial
ovarian cancer progression involving fatty acid metabolic
reprogramming. Int J Oncol. 56:697–708. 2020.PubMed/NCBI
|
17
|
Dongol S, Zhang Q, Qiu C, Sun C, Zhang Z,
Wu H and Kong B: IQGAP3 promotes cancer proliferation and
metastasis in high-grade serous ovarian cancer. Oncol Lett.
20:1179–1192. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu H, Li R, Zhang Z, Jiang H, Ma H, Yuan
C, Sun C, Li Y and Kong B: Kallistatin inhibits tumour progression
and platinum resistance in high-grade serous ovarian cancer. J
Ovarian Res. 12:1252019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Meng Q, Duan P, Li L and Miao Y:
Expression of placenta growth factor is associated with unfavorable
prognosis of advanced-stage serous ovarian cancer. Tohoku J Exp
Med. 244:291–296. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang R, Hao J, Wu Q, Guo K, Wang C, Zhang
WK, Liu W, Wang Q and Yang X: Dehydrocostus lactone inhibits cell
proliferation and induces apoptosis by PI3K/Akt/Bad and ERS
signalling pathway in human laryngeal carcinoma. J Cell Mol Med.
24:6028–6042. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L,
Zhang W, Li D and Li L: CCL18 from tumor-cells promotes epithelial
ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog.
55:1688–1699. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kilkenny C, Browne WJ, Cuthill IC, Emerson
M and Altman DG: Improving bioscience research reporting: The
ARRIVE guidelines for reporting animal research. PLoS Biol.
8:e10004122010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen F, Sun F, Liu X, Shao J and Zhang B:
Glaucocalyxin A inhibits the malignant progression of epithelial
ovarian cancer by affecting the
MicroRNA-374b-5p/HMGB3/Wnt-β-catenin pathway axis. Front Oncol.
12:9558302022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Z, Jensen MA and Zenklusen JC: A
Practical guide to the cancer genome atlas (TCGA). Methods Mol
Biol. 1418:111–141. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jiang X, Bai XY, Li B, Li Y, Xia K, Wang
M, Li S and Wu H: Plasma inter-alpha-trypsin inhibitor heavy chains
H3 and H4 serve as novel diagnostic biomarkers in human colorectal
cancer. Dis Markers. 2019:50696142019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wijdeven RH, Pang B, Assaraf YG and
Neefjes J: Old drugs, novel ways out: Drug resistance toward
cytotoxic chemotherapeutics. Drug Resist Updat. 28:65–81. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wlodkowic D, Telford W, Skommer J and
Darzynkiewicz Z: Apoptosis and beyond: Cytometry in studies of
programmed cell death. Methods Cell Biol. 103:55–98. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Martinou JC and Youle RJ: Mitochondria in
apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev
Cell. 21:92–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Youle RJ and Strasser A: The BCL-2 protein
family: Opposing activities that mediate cell death. Nat Rev Mol
Cell Biol. 9:47–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Maundrell K, Antonsson B, Magnenat E,
Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E,
Martinou JC and Arkinstall S: Bcl-2 undergoes phosphorylation by
c-Jun N-terminal kinase/stress-activated protein kinases in the
presence of the constitutively active GTP-binding protein Rac1. J
Biol Chem. 272:25238–25242. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yamamoto K, Ichijo H and Korsmeyer SJ:
BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal
protein kinase pathway normally activated at G(2)/M. Mol Cell Biol.
19:8469–8478. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang ST and Cidlowski JA: Phosphorylation
status modulates Bcl-2 function during glucocorticoid-induced
apoptosis in T lymphocytes. FASEB J. 16:825–832. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ebana Y, Ozaki K, Inoue K, Sato H, Iida A,
Lwin H, Saito S, Mizuno H, Takahashi A, Nakamura T, et al: A
functional SNP in ITIH3 is associated with susceptibility to
myocardial infarction. J Hum Genet. 52:220–229. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xie X, Meng H, Wu H, Hou F, Chen Y, Zhou
Y, Xue Q, Zhang J, Gong J, Li L and Song R: Integrative analyses
indicate an association between ITIH3 polymorphisms with autism
spectrum disorder. Sci Rep. 10:52232020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li K, Li Y, Wang J, Huo Y, Huang D, Li S,
Liu J, Li X, Liu R, Chen X, et al: A functional missense variant in
ITIH3 affects protein expression and neurodevelopment and confers
schizophrenia risk in the Han Chinese population. J Genet Genomics.
47:233–248. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liao CC, Chou PL, Cheng CW, Chang YS, Chi
WM, Tsai KL, Chen WJ, Kung TS, Tai CC, Lee KW, et al: Comparative
analysis of novel autoantibody isotypes against
citrullinated-inter-alpha-trypsin inhibitor heavy chain 3
(ITIH3)(542–556) peptide in serum from Taiwanese females with
rheumatoid arthritis, primary Sjögren's syndrome and secondary
Sjögren's syndrome in rheumatoid arthritis. J Proteomics. 141:1–11.
2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cuvelier A, Muir JF, Martin JP and Sesboüé
R: Proteins of the inter-alpha trypsin inhibitor (ITI) family. A
major role in the biology of the extracellular matrix. Rev Mal
Respir. 17:437–446. 2000.(In French). PubMed/NCBI
|
39
|
Zhuo L and Kimata K: Structure and
function of inter-alpha-trypsin inhibitor heavy chains. Connect
Tissue Res. 49:311–320. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hennies HC: All is balanced:
Inter-α-trypsin inhibitors as unseen extracellular matrix proteins
in epidermal morphology and differentiation. Exp Dermatol.
24:661–662. 2015. View Article : Google Scholar : PubMed/NCBI
|