1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Huang J, Lok V, Ngai CH, Zhang L, Yuan J,
Lao XQ, Ng K, Chong C, Zheng ZJ and Wong MCS: Worldwide burden of,
risk factors for, and trends in pancreatic cancer.
Gastroenterology. 160:744–754. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khalaf N, El-Serag HB, Abrams HR and
Thrift AP: Burden of pancreatic cancer: From epidemiology to
practice. Clin Gastroenterol Hepatol. 19:876–884. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Anderson NM and Simon MC: The tumor
microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ziani L, Chouaib S and Thiery J:
Alteration of the antitumor immune response by cancer-associated
fibroblasts. Front Immunol. 9:4142018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Beer TW, Ng LB and Murray K: Mast cells
have prognostic value in Merkel cell carcinoma. Am J Dermatopathol.
30:27–30. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kolset SO and Pejler G: Serglycin: A
structural and functional chameleon with wide impact on immune
cells. J Immunol. 187:4927–4933. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Weniger M, Honselmann KC and Liss AS: The
extracellular matrix and pancreatic cancer: A complex relationship.
Cancers (Basel). 10:3162018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Leinwand J and Miller G: Regulation and
modulation of antitumor immunity in pancreatic cancer. Nat Immunol.
21:1152–1159. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mizrahi JD, Surana R, Valle JW and Shroff
RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gelse K, Pöschl E and Aigner T:
Collagens-structure, function, and biosynthesis. Adv Drug Deliv
Rev. 55:1531–1546. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Klingberg S, Mortimore R, Parkes J, Chick
JE, Clague AE, Murrell D, Weedon D and Glass IA: Prenatal diagnosis
of dominant dystrophic epidermolysis bullosa, by COL7A1 molecular
analysis. Prenat Diagn. 20:618–622. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martins VL, Vyas JJ, Chen M, Purdie K,
Mein CA, South AP, Storey A, McGrath JA and O'Toole EA: Increased
invasive behaviour in cutaneous squamous cell carcinoma with loss
of basement-membrane type VII collagen. J Cell Sci. 122:1788–1799.
2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kita Y, Mimori K, Tanaka F, Matsumoto T,
Haraguchi N, Ishikawa K, Matsuzaki S, Fukuyoshi Y, Inoue H,
Natsugoe S, et al: Clinical significance of LAMB3 and COL7A1 mRNA
in esophageal squamous cell carcinoma. Eur J Surg Oncol. 35:52–58.
2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baba Y, Iyama K, Honda S, Ishikawa S,
Miyanari N and Baba H: Cytoplasmic expression of type VII collagen
is related to prognosis in patients with esophageal squamous cell
carcinoma. Oncology. 71:221–228. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Oh SE, Oh MY, An JY, Lee JH, Sohn TS, Bae
JM, Choi MG and Kim KM: Prognostic value of highly expressed type
VII collagen (COL7A1) in patients with gastric cancer. Pathol Oncol
Res. 27:16098602021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wickham H: (2016) ggplot2: Elegant
graphics for data analysis. Springer-Verlag; New York: ISBN
978-3-319-24277-4.
|
19
|
Robin X, Turck N, Hainard A, Tiberti N,
Lisacek F, Sanchez JC and Müller M: pROC: An open-source package
for R and S+ to analyze and compare ROC curves. BMC Bioinformatics.
12:772011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hänzelmann S, Castelo R and Guinney J:
GSVA: Gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics. 14:72013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bindea G, Mlecnik B, Tosolini M,
Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T,
Lafontaine L, Berger A, et al: Spatiotemporal dynamics of
intratumoral immune cells reveal the immune landscape in human
cancer. Immunity. 39:782–795. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nagy Á, Munkácsy G and Győrffy B:
Pancancer survival analysis of cancer hallmark genes. Sci Rep.
11:60472021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Walker C, Mojares E and Del Río Hernández
A: Role of extracellular matrix in development and cancer
progression. Int J Mol Sci. 19:30282018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gatseva A, Sin YY, Brezzo G and Van
Agtmael T: Basement membrane collagens and disease mechanisms.
Essays Biochem. 63:297–312. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Martins VL, Caley MP, Moore K, Szentpetery
Z, Marsh ST, Murrell DF, Kim MH, Avari M, McGrath JA, Cerio R, et
al: Suppression of TGFβ and angiogenesis by type VII collagen in
cutaneous SCC. J Natl Cancer Inst. 108:djv2932015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pedersen SF, Flinck M and Pardo LA: The
interplay between dysregulated ion transport and mitochondrial
architecture as a dangerous liaison in cancer. Int J Mol Sci.
22:52092021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Marchi S, Giorgi C, Galluzzi L and Pinton
P: Ca2+ fluxes and cancer. Mol Cell. 78:1055–1069. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Han Y, Liu C, Zhang D, Men H, Huo L, Geng
Q, Wang S, Gao Y, Zhang W, Zhang Y and Jia Z: Mechanosensitive ion
channel Piezo1 promotes prostate cancer development through the
activation of the Akt/mTOR pathway and acceleration of cell cycle.
Int J Oncol. 55:629–644. 2019.PubMed/NCBI
|
32
|
Oshi M, Newman S, Tokumaru Y, Yan L,
Matsuyama R, Endo I, Katz MHG and Takabe K: High G2M pathway score
pancreatic cancer is associated with worse survival, particularly
after margin-positive (R1 or R2) resection. Cancers (Basel).
12:28712020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Krebs AM, Mitschke J, Losada ML,
Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D,
Reichardt W, Bronsert P, et al: The EMT-activator Zeb1 is a key
factor for cell plasticity and promotes metastasis in pancreatic
cancer. Nat Cell Biol. 19:518–529. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu
Y, Yao Y and Li D: The epithelial to mesenchymal transition (EMT)
and cancer stem cells: Implication for treatment resistance in
pancreatic cancer. Mol Cancer. 16:522017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fang Y, Saiyin H, Zhao X, Wu Y, Han X and
Lou W: IL-8-positive tumor-infiltrating inflammatory cells are a
novel prognostic marker in pancreatic ductal adenocarcinoma
patients. Pancreas. 45:671–678. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Y, Velez-Delgado A, Mathew E, Li D,
Mendez FM, Flannagan K, Rhim AD, Simeone DM, Beatty GL and di
Magliano MP: Myeloid cells are required for PD-1/PD-L1 checkpoint
activation and the establishment of an immunosuppressive
environment in pancreatic cancer. Gut. 66:124–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Protti MP and De Monte L: Immune
infiltrates as predictive markers of survival in pancreatic cancer
patients. Front Physiol. 4:2102013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang MW, Tao LY, Jiang YS, Yang JY, Huo
YM, Liu DJ, Li J, Fu XL, He R, Lin C, et al: Perineural invasion
reprograms the immune microenvironment through cholinergic
signaling in pancreatic ductal adenocarcinoma. Cancer Res.
80:1991–2003. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Marcon F, Zuo J, Pearce H, Nicol S,
Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R,
Roberts KJ and Moss P: NK cells in pancreatic cancer demonstrate
impaired cytotoxicity and a regulatory IL-10 phenotype.
Oncoimmunology. 9:18454242020. View Article : Google Scholar : PubMed/NCBI
|