1
|
Ziaran S, Varchulova Novakova Z, Bohmer D
and Danisovic L: Biomarkers for determination prostate cancer:
Implication for diagnosis and prognosis. Neoplasma. 62:683–691.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Joshi AD, Corral R, Catsburg C, Lewinger
JP, Koo J, John EM, Ingles SA and Stern MC: Red meat and poultry,
cooking practices, genetic susceptibility and risk of prostate
cancer: Results from a multiethnic case-control study.
Carcinogenesis. 33:2108–2118. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liska DJ: The detoxification enzyme
systems. Altern Med Rev. 3:187–198. 1998.PubMed/NCBI
|
4
|
Almazroo OA, Miah MK and Venkataramanan R:
Drug metabolism in the liver. Clin Liver Dis. 21:1–20. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaur G, Gupta SK, Singh P, Ali V, Kumar V
and Verma M: Drug-metabolizing enzymes: Role in drug resistance in
cancer. Clin Transl Oncol. 22:1667–1680. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Anzenbacher P and Anzenbacherová E:
Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci.
58:737–747. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Go RE, Hwang KA and Choi KC: Cytochrome
P450 1 family and cancers. J Steroid Biochem Mol Biol. 147:24–30.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Williams JA, Martin FL, Muir GH, Hewer A,
Grover PL and Phillips DH: Metabolic activation of carcinogens and
expression of various cytochromes P450 in human prostate tissue.
Carcinogenesis. 21:1683–1689. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou SF, Wang B, Yang LP and Liu JP:
Structure, function, regulation and polymorphism and the clinical
significance of human cytochrome P450 1A2. Drug Metab Rev.
42:268–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zanger UM and Schwab M: Cytochrome P450
enzymes in drug metabolism: Regulation of gene expression, enzyme
activities, and impact of genetic variation. Pharmacol Ther.
138:103–141. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eaton DL, Gallagher EP, Bammler TK and
Kunze KL: Role of cytochrome P4501A2 in chemical carcinogenesis:
Implications for human variability in expression and enzyme
activity. Pharmacogenetics. 5:259–274. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gunes A and Dahl ML: Variation in CYP1A2
activity and its clinical implications: Influence of environmental
factors and genetic polymorphisms. Pharmacogenomics. 9:625–637.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nebert DW and Dalton TP: The role of
cytochrome P450 enzymes in endogenous signalling pathways and
environmental carcinogenesis. Nat Rev Cancer. 6:947–960. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zaccaro C, Sweitzer S, Pipino S, Gorman N,
Sinclair PR, Sinclair JF, Nebert DW and De Matteis F: Role of
cytochrome P450 1A2 in bilirubin degradation studies in Cyp1a2
(−/-) mutant mice. Biochem Pharmacol. 61:843–849. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lambrecht RW, Jacobs JM, Sinclair PR and
Sinclair JF: Inhibition of uroporphyrinogen decarboxylase activity.
The role of cytochrome P-450-mediated uroporphyrinogen oxidation.
Biochem J. 269:437–441. 1990. View Article : Google Scholar : PubMed/NCBI
|
16
|
Djordjevic N, Ghotbi R, Bertilsson L,
Jankovic S and Aklillu E: Induction of CYP1A2 by heavy coffee
consumption in Serbs and Swedes. Eur J Clin Pharmacol. 64:381–385.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rasmussen BB, Brix TH, Kyvik KO and Brøsen
K: The interindividual differences in the 3-demthylation of
caffeine alias CYP1A2 is determined by both genetic and
environmental factors. Pharmacogenetics. 12:473–478. 2002.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimada T, El-Bayoumy K, Upadhyaya P,
Sutter TR, Guengerich FP and Yamazaki H: Inhibition of human
cytochrome P450-catalyzed oxidations of xenobiotics and
procarcinogens by synthetic organoselenium compounds. Cancer Res.
57:4757–4764. 1997.PubMed/NCBI
|
19
|
Rodgman A, Smith CJ and Perfetti TA: The
composition of cigarette smoke: A retrospective, with emphasis on
polycyclic components. Hum Exp Toxicol. 19:573–595. 2000.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hladun O, Papaseit E, Martín S,
Barriocanal AM, Poyatos L, Farré M and Pérez-Mañá C: Interaction of
energy drinks with prescription medication and drugs of abuse.
Pharmaceutics. 13:15322021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Christensen M, Tybring G, Mihara K,
Yasui-Furokori N, Carrillo JA, Ramos SI, Andersson K, Dahl ML and
Bertilsson L: Low daily 10-mg and 20-mg doses of fluvoxamine
inhibit the metabolism of both caffeine (cytochrome P4501A2) and
omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 71:141–152.
2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Faber MS, Jetter A and Fuhr U: Assessment
of CYP1A2 activity in clinical practice: Why, how, and when? Basic
Clin Pharmacol Toxicol. 97:125–134. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou SF, Yang LP, Zhou ZW, Liu YH and Chan
E: Insights into the substrate specificity, inhibitors, regulation,
and polymorphisms and the clinical impact of human cytochrome P450
1A2. AAPS J. 11:481–494. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Daly AK: Polymorphic variants of
cytochrome P450: Relevance to cancer and other diseases. Adv
Pharmacol. 74:85–111. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vukovic V, Ianuale C, Leoncini E,
Pastorino R, Gualano MR, Amore R and Boccia S: Lack of association
between polymorphisms in the CYP1A2 gene and risk of cancer:
Evidence from meta-analyses. BMC Cancer. 16:832016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Híveš M, Jurečeková J, Kliment J, Grendár
M, Kaplán P, Dušenka R, Evin D, Vilčková M, Holečková KH and
Sivoňová MK: Role of genetic variations in CDK2, CCNE1 and p27KIP1
in prostate cancer. Cancer Genomics Proteomics. 19:362–371. 2022.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Sivonova MK, Jurecekova J, Kaplan P, Hives
M, Grendar M, Tomascova A, Dusenka R, Drobkova H, Evin D and
Kliment J: Association of MDM2 T309G (rs2279744) polymorphism and
expression changes with risk of prostate cancer in the Slovak
population. Anticancer Res. 40:6257–6264. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pienta KJ: Critical appraisal of
prostate-specific antigen in prostate cancer screening: 20 Years
later. Urology. 73 (5 Suppl):S11–S20. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
van Leenders GJLH, van der Kwast TH,
Grignon DJ, Evans AJ, Kristiansen G, Kweldam CF, Litjens G,
McKenney JK, Melamed J, Mottet N, et al: The 2019 international
society of urological pathology (ISUP) consensus conference on
grading of prostatic carcinoma. Am J Surg Pathol. 44:e87–e99. 2020.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Epstein JI, Egevad L, Amin MB, Delahunt B,
Srigley JR and Humphrey PA; Grading Committee, : The 2014
international society of urological pathology (ISUP) consensus
conference on gleason grading of prostatic carcinoma: Definition of
grading patterns and proposal for a new grading system. Am J Surg
Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Matakova T, Halasova E, Dzian A, Hruby R,
Halasa M, Javorka K and Skerenova M: Associations of CYP1A2
polymorphisms with the risk haplotypes in lung cancer in the Slovak
population. Adv Exp Med Biol. 911:23–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Barrett JC, Fry B, Maller J and Daly MJ:
Haploview: Analysis and visualization of LD and haplotype maps.
Bioinformatics. 21:263–265. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
1000 Genomes Project Consortium, . Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA and Abecasis GR: A global reference for
human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Untergasser A, Nijveen H, Rao X, Bisseling
T, Geurts R and Leunissen JAM: Primer3Plus, an enhanced web
interface to Primer3. Nucleic Acids Res. 35:(Web Server Issue).
W71–W74. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Purcell S, Neale B, Todd-Brown K, Thomas
L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ
and Sham PC: PLINK: A tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet. 81:559–575.
2007. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Lewis CM: Genetic association studies:
Design, analysis and interpretation. Brief Bioinform. 3:146–153.
2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Horita N and Kaneko T: Genetic model
selection for a case-control study and a meta-analysis. Meta Gene.
5:1–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Clarke GM, Anderson CA, Pettersson FH,
Cardon LR, Morris AP and Zondervan KT: Basic statistical analysis
in genetic case-control studies. Nat Protoc. 6:121–133. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Aldrich MC, Selvin S, Hansen HM, Barcellos
LF, Wrensch MR, Sison JD, Kelsey KT, Buffler PA, Quesenberry CP Jr,
Seldin MF and Wiencke JK: CYP1A1/2 haplotypes and lung cancer and
assessment of confounding by population stratification. Cancer Res.
69:2340–2348. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rotunno M, Yu K, Lubin JH, Consonni D,
Pesatori AC, Goldstein AM, Goldin LR, Wacholder S, Welch R,
Burdette L, et al: Phase I metabolic genes and risk of lung cancer:
Multiple polymorphisms and mRNA expression. PLoS One. 4:e56522009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen X, Wang H, Xie W, Liang R, Wei Z, Zhi
L, Zhang X, Hao B, Zhong S, Zhou G, et al: Association of CYP1A2
genetic polymorphisms with hepatocellular carcinoma susceptibility:
A case-control study in a high-risk region of China. Pharmacogenet
Genomics. 16:219–227. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bai X, Xie J, Sun S, Zhang X, Jiang Y and
Pang D: The associations of genetic polymorphisms in CYP1A2 and
CYP3A4 with clinical outcomes of breast cancer patients in northern
China. Oncotarget. 8:38367–38377. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Anderson LN, Cotterchio M, Mirea L,
Ozcelik H and Kreiger N: Passive cigarette smoke exposure during
various periods of life, genetic variants, and breast cancer risk
among never smokers. Am J Epidemiol. 175:289–301. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang H, Yamamoto JF, Caberto C, Saltzman
B, Decker R, Vogt TM, Yokochi L, Chanock S, Wilkens LR and Le
Marchand L: Genetic variation in the bioactivation pathway for
polycyclic hydrocarbons and heterocyclic amines in relation to risk
of colorectal neoplasia. Carcinogenesis. 32:203–209. 2011.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Koda M, Iwasaki M, Yamano Y, Lu X and
Katoh T: Association between NAT2, CYP1A1, and CYP1A2 genotypes,
heterocyclic aromatic amines, and prostate cancer risk: A case
control study in Japan. Environ Health Prev Med. 22:722017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei W, Ge JP, Dong J, Gao JP, Zhang ZY and
Gong J: Single nucleotide polymorphisms of CYP1A2 and their
correlation with prostate cancer. Zhonghua Nan Ke Xue. 17:998–1001.
2011.(In Chinese). PubMed/NCBI
|
47
|
Cunningham JM, Hebbring SJ, McDonnell SK,
Cicek MS, Christensen GB, Wang L, Jacobsen SJ, Cerhan JR, Blute ML,
Schaid DJ and Thibodeau SN: Evaluation of genetic variations in the
androgen and estrogen metabolic pathways as risk factors for
sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers
Prev. 16:969–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Murata M, Watanabe M, Yamanaka M, Kubota
Y, Ito H, Nagao M, Katoh T, Kamataki T, Kawamura J, Yatani R and
Shiraishi T: Genetic polymorphisms in cytochrome P450 (CYP) 1A1,
CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and
susceptibility to prostate cancer in the Japanese population.
Cancer Lett. 165:171–177. 2001. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shahabi A, Corral R, Catsburg C, Joshi AD,
Kim A, Lewinger JP, Koo J, John EM, Ingles SA and Stern MC: Tobacco
smoking, polymorphisms in carcinogen metabolism enzyme genes, and
risk of localized and advanced prostate cancer: Results from the
California collaborative prostate cancer study. Cancer Med.
3:1644–1655. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gooderham NJ, Murray S, Lynch AM, Edwards
RJ, Yadollahi-Farsani M, Bratt C, Rich KJ, Zhao K, Murray BP,
Bhadresa S, et al: Heterocyclic amines: Evaluation of their role in
diet associated human cancer. Br J Clin Pharmacol. 42:91–98. 1996.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhenzhen L, Xianghua L, Ning S, Zhan G,
Chuanchuan R and Jie L: Current evidence on the relationship
between three polymorphisms in the CYP1A2 gene and the risk of
cancer. Eur J Cancer Prev. 22:607–619. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ghotbi R, Christensen M, Roh HK,
Ingelman-Sundberg M, Aklillu E and Bertilsson L: Comparisons of
CYP1A2 genetic polymorphisms, enzyme activity and the
genotype-phenotype relationship in Swedes and Koreans. Eur J Clin
Pharmacol. 63:537–546. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wigle DT, Turner MC, Gomes J and Parent
ME: Role of hormonal and other factors in human prostate cancer. J
Toxicol Environ Health B Crit Rev. 11:242–259. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Tsuchiya Y, Nakajima M and Yokoi T:
Cytochrome P450-mediated metabolism of estrogens and its regulation
in human. Cancer Lett. 227:115–124. 2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Samavat H and Kurzer MS: Estrogen
metabolism and breast cancer. Cancer Lett. 356:231–243. 2015.
View Article : Google Scholar : PubMed/NCBI
|