1
|
Vang KB, Safina I, Darrigues E, Nedosekin
D, Nima ZA, Majeed W, Watanabe F, Kannarpady G, Kore RA, Casciano
D, et al: Modifying dendritic cell activation with plasmonic nano
vectors. Sci Rep. 7:55132017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zapala L, Drela N, Bil J, Nowis D, Basak
GW and Lasek W: Optimization of activation requirements of immature
mouse dendritic JAWSII cells for in vivo application. Oncol Rep.
25:831–840. 2011.PubMed/NCBI
|
3
|
Jittimanee S, Wongratanacheewin S,
Kaewraemruaen C and Jittimanee J: Opisthorchis viverrini antigens
up-regulates the expression of CD80 and MHC class II in JAWSII
mouse dendritic cells and promotes IL-10 and TGF-β secretions.
Parasitol Int. 84:1024012021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maruszewska-Cheruiyot M,
Donskow-Łysoniewska K, Piechna K, Krawczak K and Doligalska M: L4
stage Heligmosomoides polygyrus prevents the maturation of
dendritic JAWS II cells. Exp Parasitol. 196:12–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bieńkowska A, Kiernozek E, Kozlowska E,
Zarzycki M and Drela N: Thymus-deriving natural regulatory T cell
generation in vitro: Role of the source of activation signals.
Immunol Lett. 162:199–209. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eko FO, Mania-Pramanik J, Pais R, Pan Q,
Okenu DM, Johnson A, Ibegbu C, He C, He Q, Russell R, et al: Vibrio
cholerae ghosts (VCG) exert immunomodulatory effect on dendritic
cells for enhanced antigen presentation and induction of protective
immunity. BMC Immunol. 15:5842014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Egger M, Jürets A, Wallner M, Briza P,
Ruzek S, Hainzl S, Pichler U, Kitzmüller C, Bohle B, Huber CG and
Ferreira F: Assessing protein immunogenicity with a dendritic cell
line-derived endolysosomal degradome. PLoS One. 6:e172782011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu Y, Li M, Lu B, Wang X, Chen C and Zhang
M: Corticotropin-releasing factor augments LPS-induced
immune/inflammatory responses in JAWSII cells. Immunol Res.
64:540–547. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mutlu EC, Kaya Ö, Wood M, Mager I, Topkara
KÇ, Çamsarı Ç, Birinci Yildirim A, Çetinkaya A, Acarel D and
Odabaşı Bağcı J: Efficient doxorubicin loading to isolated
dexosomes of immature JAWSII cells: Formulated and characterized as
the bionanomaterial. Materials (Basel). 13:33442020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Safina I, Alghazali KM, Childress L,
Griffin C, Hashoosh A, Kannarpady G, Watanabe F, Bourdo SE, Dings
RPM, Biris AS and Vang KB: Dendritic cell biocompatibility of
ether-based urethane films. J Appl Toxicol. 41:1456–1466. 2021.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ssemakalu CC, Ubomba-Jaswa E, Motaung KSCM
and Pillay M: Solar inactivated Vibrio cholerae induces maturation
of JAWS II dendritic cell line in vitro. J Water Health.
18:494–504. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Baldin AV, Savvateeva LV, Bazhin AV and
Zamyatnin AA Jr: Dendritic Cells in anticancer vaccination:
Rationale for ex vivo loading or in vivo targeting. Cancers
(Basel). 12:5902020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wculek SK, Cueto FJ, Mujal AM, Melero I,
Krummel MF and Sancho D: Dendritic cells in cancer immunology and
immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N
and Wu Y: Insights into dendritic cells in cancer immunotherapy:
From bench to clinical applications. Front Cell Dev Biol.
9:6865442021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lutz MB and Schuler G: Immature,
semi-mature and fully mature dendritic cells: Which signals induce
tolerance or immunity? Trends Immunol. 23:445–449. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dalod M, Chelbi R, Malissen B and Lawrence
T: Dendritic cell maturation: Functional specialization through
signaling specificity and transcriptional programming. EMBO J.
33:1104–1116. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yi HJ and Lu GX: Adherent and non-adherent
dendritic cells are equivalently qualified in GM-CSF, IL-4 and
TNF-α culture system. Cell Immunol. 277:44–48. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang J, Dai X, Hsu C, Ming C, He Y, Zhang
J, Wei L, Zhou P, Wang CY, Yang J and Gong N: Discrimination of the
heterogeneity of bone marrow-derived dendritic cells. Mol Med Rep.
16:6787–6793. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Machcińska M, Kotur M, Jankowska A,
Maruszewska-Cheruiyot M, Łaski A, Kotkowska Z, Bocian K and
Korczak-Kowalska G: Cyclosporine A, in contrast to rapamycin,
affects the ability of dendritic cells to induce immune tolerance
mechanisms. Arch Immunol Ther Exp (Warsz). 69:272021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Aksoy E, Saveanu L and Manoury B: The
isoform selective roles of PI3Ks in dendritic cell biology and
function. Front Immunol. 9:25742018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Datler H, Vogel A, Kerndl M, Baumgartinger
C, Musiejovsky L, Makivic N, Frech S, Niederreiter B, Haider T,
Pühringer M, et al: PI3K activity in dendritic cells exerts
paradoxical effects during autoimmune inflammation. Mol Immunol.
111:32–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bhattacharyya S, Sen P, Wallet M, Long B,
Baldwin AS Jr and Tisch R: Immunoregulation of dendritic cells by
IL-10 is mediated through suppression of the PI3K/Akt pathway and
of IkappaB kinase activity. Blood. 104:1100–1109. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cahill CM, Rogers JT and Walker WA: The
role of phosphoinositide 3-kinase signaling in intestinal
inflammation. J Signal Transduct. 2012:3584762012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu J and Wan Y: Tolerogenic dendritic
cells and their potential applications. Immunology. 132:307–314.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Svajger U and Rozman P: Tolerogenic
dendritic cells: Molecular and cellular mechanisms in
transplantation. J Leukoc Biol. 95:53–69. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Langenkamp A, Messi M, Lanzavecchia A and
Sallusto F: Kinetics of dendritic cell activation: Impact on
priming of TH1, TH2 and nonpolarized T cells. Nat Immunol.
1:311–316. 2000. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Abdi K, Singh NJ and Matzinger P:
Lipopolysaccharide-activated dendritic cells: ‘Exhausted’ or alert
and waiting? J Immunol. 188:5981–5989. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pittenger MF, Discher DE, Péault BM,
Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell
perspective: Cell biology to clinical progress. NPJ Regen Med.
4:222019. View Article : Google Scholar : PubMed/NCBI
|