Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)
- Authors:
- Xiaowei Wang
- Na Zhang
- Meihua Li
- Tao Hong
- Wei Meng
- Taohui Ouyang
-
Affiliations: Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: February 8, 2023 https://doi.org/10.3892/ol.2023.13709
- Article Number: 123
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kulathu Y and Komander D: Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Bio. 13:508–523. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eldridge AG and O'Brien T: Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 17:4–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mata-Cantero L, Lobato-Gil S, Aillet F, Lang V and Rodriguez MS: The ubiquitin-proteasome system (UPS) as a cancer drug target: Emerging mechanisms and therapeutics. Springer; Netherlands, Dordrecht: pp. 225–264. 2014 | |
Komander D, Clague MJ and Urbé S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Bio. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D and Petsko GA: Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA. 103:4675–4680. 2006. View Article : Google Scholar : PubMed/NCBI | |
Setsuie R and Wada K: The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int. 51:105–111. 2007. View Article : Google Scholar : PubMed/NCBI | |
Doran JF, Jackson P, Kynoch PA and Thompson RJ: Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 40:1542–1547. 1983. View Article : Google Scholar : PubMed/NCBI | |
Day INM and Thompson RJ: UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 90:327–362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bishop P, Rocca D and Henley JM: Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction. Biochem J. 473:2453–2462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang KK, Yang Z, Sarkis G, Torres I and Raghavan V: Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets. 21:627–638. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gong B and Leznik E: The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 20:365–370. 2007. View Article : Google Scholar : PubMed/NCBI | |
Butterfield DA: Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med. 177:278–286. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matuszczak E, Tylicka M, Komarowska MD, Debek W and Hermanowicz A: Ubiquitin carboxy-terminal hydrolase L1-physiology and pathology. Cell Biochem Funct. 38:533–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang Y and Shen X: Ubiquitin carboxyl-terminal hydrolases: Involvement in cancer progression and clinical implications. Cancer Metast Rev. 36:669–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Fu D and Shen X: The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta. 1806:1–6. 2010.PubMed/NCBI | |
Ning K, Wang T, Sun X, Zhang P, Chen Y, Jin J and Hua D: UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol. 115:932–940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM and Zhu H: UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem. 119:691–700. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Liu H, Tobar-Tosse F, Chand Dakal T, Ludwig M, Holz FG, Loeffler KU, Wüllner U and Herwig-Carl MC: Ubiquitin carboxyl-terminal hydrolases (UCHs): Potential mediators for cancer and neurodegeneration. Int J Mol Sci. 21:39102020. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, et al: The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics. 10:6048–6060. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M and Sidransky D: The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer. 123:753–759. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y, Carvalho AL, Jiang WW, Park HL, Kim MS, et al: PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 65:4963–4968. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yamashita K, Park HL, Kim MS, Osada M, Tokumaru Y, Inoue H, Mori M and Sidransky D: PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res. 66:3921–3927. 2006. View Article : Google Scholar : PubMed/NCBI | |
Okochi-Takada E, Nakazawa K, Wakabayashi M, Mori A, Ichimura S, Yasugi T and Ushijima T: Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer. 119:1338–1344. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kagara I, Enokida H, Kawakami K, Matsuda R, Toki K, Nishimura H, Chiyomaru T, Tatarano S, Itesako T, Kawamoto K, et al: CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J Urol. 180:343–351. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Tao Q, Cheung KF, Jin H, Poon FF, Wang X, Li H, Cheng YY, Röcken C, Ebert MPA, et al: Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology. 48:508–518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, Xiong L, Putti TC, Oberst M, Kelly K, et al: The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One. 7:e297832012. View Article : Google Scholar : PubMed/NCBI | |
Finnerty BM, Moore MD, Verma A, Aronova A, Huang S, Edwards DP, Chen Z, Seandel M, Scognamiglio T, Du YN, et al: UCHL1 loss alters the cell-cycle in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 26:411–423. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Lei Y, He SW, Li YQ, Wang YQ, Hong XH, Liang YL, Li JY, Chen Y, Luo WJ, et al: Hypermethylation of UCHL1 promotes metastasis of nasopharyngeal carcinoma by suppressing degradation of cortactin (CTTN). Cells. 9:5592020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, González-Prieto R, Zhang M, Geurink PP, Kooij R, Iyengar PV, van Dinther M, Bos E, Zhang X, Le Dévédec SE, et al: Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 26:1460–1473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shimada Y, Kudo Y, Maehara S, Matsubayashi J, Otaki Y, Kajiwara N, Ohira T, Minna JD and Ikeda N: Ubiquitin C-terminal hydrolase-L1 has prognostic relevance and is a therapeutic target for high-grade neuroendocrine lung cancers. Cancer Sci. 111:610–620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Foreman O, Perkins SL, Witzig TE, Miles RR, van Deursen J and Galardy PJ: The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia. 24:1641–1655. 2010. View Article : Google Scholar : PubMed/NCBI | |
Howell VM, Gill A, Clarkson A, Nelson AE, Dunne R, Delbridge LW, Robinson BG, Teh BT, Gimm O and Marsh DJ: Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 94:434–441. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ and Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 28:117–127. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mastoraki A, Ioannidis E, Patsouris E, Safioleas M and Aroni K: PGP 9.5 expression in cutaneous keratoacanthomas and squamous cell carcinomas. Arch Dermatol Res. 301:653–658. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Qiao G, Min D, Zhang Z, Lin F, Yang Q, Feng T, Tang L, Sun Y, Zhao H, et al: Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Lett. 359:36–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kwan SY, Au-Yeung CL, Yeung TL, Rynne-Vidal A, Wong KK, Risinger JI, Lin HK, Schmandt RE, Yates MS, Mok SC and Lu KH: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) promotes uterine serous cancer cell proliferation and cell cycle progression. Cancers (Basel). 12:1182020. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Lv F, Xue M, Chen K, Cheng C, Ding X, Jin M, Xu G, Zhang Y, Wu Z, et al: The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation. J Exp Clin Canc Res. 37:2582018. View Article : Google Scholar : PubMed/NCBI | |
Luchansky SJ, Lansbury PT Jr and Stein RL: Substrate recognition and catalysis by UCH-L1. Biochemistry. 45:14717–14725. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, et al: The ubiquitin pathway in Parkinson's disease. Nature. 395:451–452. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sekiguchi S, Kwon J, Yoshida E, Hamasaki H, Ichinose S, Hideshima M, Kuraoka M, Takahashi A, Ishii Y, Kyuwa S, et al: Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol. 169:1722–1729. 2006. View Article : Google Scholar : PubMed/NCBI | |
Day IN and Thompson RJ: Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210:157–160. 1987. View Article : Google Scholar : PubMed/NCBI | |
Larsen CN, Krantz BA and Wilkinson KD: Substrate specificity of deubiquitinating enzymes: Ubiquitin C-terminal hydrolases. Biochemistry. 37:3358–3368. 1998. View Article : Google Scholar : PubMed/NCBI | |
Esteve-Rudd J, Campello L, Herrero MT, Cuenca N and Martin-Nieto J: Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Res. 1352:70–82. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wu J, Wu H, Wang T, Gan H, Zhang X, Liu Y, Li R, Zhao Z, Chen Q, et al: UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J Pathol. 217:642–653. 2009. View Article : Google Scholar : PubMed/NCBI | |
Johnston SC, Larsen CN, Cook WJ, Wilkinson KD and Hill CP: Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796. 1997. View Article : Google Scholar : PubMed/NCBI | |
Grabbe C, Husnjak K and Dikic I: The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol. 12:295–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Cai F, Zhang S, Zhang S and Song W: Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo. Sci Rep. 4:72982014. View Article : Google Scholar : PubMed/NCBI | |
Suong DN, Thao DT, Masamitsu Y and Thuoc TL: Ubiquitin carboxyl hydrolase L1 significance for human diseases. Protein Pept Lett. 21:624–630. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM and Pohl J: The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 246:670–673. 1989. View Article : Google Scholar : PubMed/NCBI | |
Zhong J, Zhao M, Ma Y, Luo Q, Liu J, Wang J, Yuan X, Sang J and Huang C: UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med. 30:430–436. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, Pagano JS and Shackelford J: Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One. 4:e59552009. View Article : Google Scholar : PubMed/NCBI | |
Takami Y, Nakagami H, Morishita R, Katsuya T, Cui TX, Ichikawa T, Saito Y, Hayashi H, Kikuchi Y, Nishikawa T, et al: Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arterioscler Thromb Vasc Biol. 27:2184–2190. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Sun Y, Hu R, Luo W, Mao X, Zhao Z, Chen Q and Zhang Z: The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal. 25:1574–1585. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagata A, Itoh F, Sasho A, Sugita K, Suzuki R, Hinata H, Shimoda Y, Suzuki E, Maemoto Y, Inagawa T, et al: The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. J Biol Chem. 295:9105–9120. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Fallon L, Lashuel HA, Liu Z and Lansbury PT Jr: The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 111:209–218. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chuma M, Sakamoto M, Yasuda J, Fujii G, Nakanishi K, Tsuchiya A, Ohta T, Asaka M and Hirohashi S: Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol. 41:629–636. 2004. View Article : Google Scholar : PubMed/NCBI | |
Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, et al: Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 12:1945–1958. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kabuta T, Mitsui T, Takahashi M, Fujiwara Y, Kabuta C, Konya C, Tsuchiya Y, Hatanaka Y, Uchida K, Hohjoh H and Wada K: Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity. J Biol Chem. 288:12615–12626. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ and Galardy PJ: A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov. 5:1522019. View Article : Google Scholar : PubMed/NCBI | |
Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT and Feany MB: Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 9:139–148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Han Y, Yu Q, Wang X, Wang S and Liao X: UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J Alzheimers Dis. 49:353–363. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Zhang H, Li Y, Liu C, Wang S and Liao X: UCH-L1 inhibition suppresses tau aggresome formation during proteasomal impairment. Mol Neurobiol. 55:3812–3821. 2018.PubMed/NCBI | |
Bheda A, Gullapalli A, Caplow M, Pagano JS and Shackelford J: Ubiquitin editing enzyme UCH L1 and microtubule dynamics: Implication in mitosis. Cell Cycle. 9:980–994. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seo EY, Jin SP, Sohn KC, Park CH, Lee DH and Chung JH: UCHL1 regulates melanogenesis through controlling MITF stability in human melanocytes. J Invest Dermatol. 137:1757–1765. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rolén U, Freda E, Xie J, Pfirrmann T, Frisan T and Masucci MG: The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. J Cell Mol Med. 13:1666–1678. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lohmann F, Sachs M, Meyer TN, Sievert H, Lindenmeyer MT, Wiech T, Cohen CD, Balabanov S, Stahl RA and Meyer-Schwesinger C: UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. Biochim Biophys Acta. 1842:945–958. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X, Zeng MS, Jia WH, Zeng YX, Chan AT and Cao Y: The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 16:2949–2958. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, et al: UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun. 6:61532015. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Yang M, Zhao M, Luo Q, Yang L, Peng H, Wang J, Huang SK, Zheng ZX, Yuan XH, et al: The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36:8379–8387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Zhang W, Zhou B, Jin C, Wang Z, Yang Y, Wang Z, Chen Y and Feng X: The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. Biomed Res Int. 2015:7410302015. View Article : Google Scholar : PubMed/NCBI | |
Seliger B, Handke D, Schabel E, Bukur J, Lichtenfels R and Dammann R: Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. J Transl Med. 7:902009. View Article : Google Scholar : PubMed/NCBI | |
Mitsui Y, Shiina H, Hiraki M, Arichi N, Hiraoka T, Sumura M, Honda S, Yasumoto H and Igawa M: Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer-novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prev. 21:487–496. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brait M, Maldonado L, Noordhuis MG, Begum S, Loyo M, Poeta ML, Barbosa A, Fazio VM, Angioli R, Rabitti C, et al: Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression. PLoS One. 8:e708782013. View Article : Google Scholar : PubMed/NCBI | |
Abdelmaksoud-Dammak R, Saadallah-Kallel A, Miladi-Abdennadher I, Ayedi L, Khabir A, Sallemi-Boudawara T, Frikha M, Daoud J and Mokdad-Gargouri R: CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer. Tumour Biol. 37:1707–1714. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nanok C, Jearanaikoon P, Proungvitaya S and Limpaiboon T: Aberrant methylation of HTATIP2 and UCHL1 as a predictive biomarker for cholangiocarcinoma. Mol Med Rep. 17:4145–4153. 2018.PubMed/NCBI | |
Jaferian S, Soleymaninejad M and Daraee H: Verapamil (VER) enhances the cytotoxic effects of docetaxel and vinblastine combined therapy against non-small cell lung cancer cell lines. Drug Res (Stuttg). 68:146–152. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ge N, Yang GS, Zhang TY, Chang N, Kang YH, Zhou Q and Fan PS: Upregulation of KCNMA1 facilitates the reversal effect of verapamil on the chemoresistance to cisplatin of esophageal squamous cell carcinoma cells. Eur Rev Med Pharmacol Sci. 25:1869–1880. 2021.PubMed/NCBI | |
Li P, Zhong D and Gong PY: Synergistic effect of paclitaxel and verapamil to overcome multi-drug resistance in breast cancer cells. Biochem Biophys Res Commun. 516:183–188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Fan G, Zhang T, Ma K, Huang J, Liu M, Teng X, Xu K, Fan P and Cheng D: Upregulation of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) mediates the reversal effect of verapamil on chemo-resistance to adriamycin of hepatocellular carcinoma. Med Sci Monit. 24:2072–2082. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F, Chen Q, Yang JM, Xu ZD and Liu XP: Over-expression of ubiquitin carboxy terminal hydrolase-L1 induces apoptosis in breast cancer cells. Int J Oncol. 33:1037–1045. 2008.PubMed/NCBI | |
Maroufi F, Maali A, Abdollahpour-Alitappeh M, Ahmadi MH and Azad M: CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics. 12:1845–1859. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moore MD, Finnerty B, Gray KD, Hoda R, Liu Y, Soong L, Beninato T, Rao R, Zarnegar R and Fahey TJ III: Decreased UCHL1 expression as a cytologic biomarker for aggressive behavior in pancreatic neuroendocrine tumors. Surgery. 163:226–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scully OJ, Bay BH, Yip G and Yu Y: Breast cancer metastasis. Cancer Genomics Proteomics. 9:311–320. 2012.PubMed/NCBI | |
Miyoshi Y, Nakayama S, Torikoshi Y, Tanaka S, Ishihara H, Taguchi T, Tamaki Y and Noguchi S: High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Sci. 97:523–529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schröder C, Milde-Langosch K, Gebauer F, Schmid K, Mueller V, Wirtz RM, Meyer-Schwesinger C, Schlüter H, Sauter G and Schumacher U: Prognostic relevance of ubiquitin C-terminal hydrolase L1 (UCH-L1) mRNA and protein expression in breast cancer patients. J Cancer Res Clin. 139:1745–1755. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Zou L, Zhou D, Zhou Z, Tang F, Xu Z and Liu X: Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol Carcinog. 55:1329–1342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Zhang W, Xu J, Wang H, Zhang Z, Chu C, Liu X and Zou Q: UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. Int J Clin Exp Patho. 8:12500–12508. 2015.PubMed/NCBI | |
Li QQ, Wang WJ, Xu JD, Cao XX, Chen Q, Yang JM and Xu ZD: Up-regulation of CD147 and matrix metalloproteinase-2, −9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Sci. 98:1767–1774. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen XS, Wang KS, Guo W, Li LY, Yu P, Sun XY, Wang HY, Guan YD, Tao YG, Ding BN, et al: UCH-L1-mediated down-regulation of estrogen receptor α contributes to insensitivity to endocrine therapy for breast cancer. Theranostics. 10:1833–1848. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rochefort H, Glondu M, Sahla ME, Platet N and Garcia M: How to target estrogen receptor-negative breast cancer? Endocr Relat Cancer. 10:261–266. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mondal M, Conole D, Nautiyal J and Tate EW: UCHL1 as a novel target in breast cancer: Emerging insights from cell and chemical biology. Br J Cancer. 126:24–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Yu S, Jia M, Sun PL and Gao H: Ubiquitin C-terminal hydrolase-L1 expression in non-small-cell lung cancer and its association with clinicopathological features and prognosis. Virchows Arch. 480:577–585. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao R, Tan X, Xiao Y, Wang X, Wei Z, Wang J, Wang X, Zhou H, Zhang L and Shi Y: Ubiquitin C-terminal hydrolase L1 promotes expression of programmed cell death-ligand 1 in non-small-cell lung cancer cells. Cancer Sci. 111:3174–3183. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Bedekovics T, Liu Q, Hu W, Jeon H, Johnson SH, Vasmatzis G, May DG, Roux KJ and Galardy PJ: UCH-L1 bypasses mTOR to promote protein biosynthesis and is required for MYC-driven lymphomagenesis in mice. Blood. 132:2564–2574. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bedekovics T, Hussain S, Feldman AL and Galardy PJ: UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma. Blood. 127:1564–1574. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sui R and Piao HZ: UCHL1 enhances the malignant development of glioma via targeting GAS2. Eur Rev Med Pharmacol Sci. 24:6195–6203. 2020.PubMed/NCBI | |
Nakao K, Hirakawa T, Suwa H, Kogure K, Ikeda S, Yamashita S, Minegishi T and Kishi H: High expression of ubiquitin C-terminal hydrolase L1 Is associated with poor prognosis in endometrial cancer patients. Int J Gynecol Cancer. 28:675–683. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jang MJ, Baek SH and Kim JH: UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. 302:128–135. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α in cancer progression. Gene. 798:1457962021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Hattori A, Takahashi S, Goto Y, Harada H and Kakeya H: Ubiquitin carboxyl-terminal hydrolase L1 promotes hypoxia-inducible factor 1-dependent tumor cell malignancy in spheroid models. Cancer Sci. 111:239–252. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi E, Hwang D, Bheda-Malge A, Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS, Sokolsky M and Shakelford J: Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int J Mol Sci. 20:37332019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL and Lansbury PT Jr: Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol. 10:837–846. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Bedekovics T, Chesi M, Bergsagel PL and Galardy PJ: UCHL1 is a biomarker of aggressive multiple myeloma required for disease progression. Oncotarget. 6:40704–40718. 2015. View Article : Google Scholar : PubMed/NCBI | |
D'Arcy P, Wang X and Linder S: Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther. 147:32–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mermerian AH, Case A, Stein RL and Cuny GD: Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors. Bioorg Med Chem Lett. 17:3729–3732. 2007. View Article : Google Scholar : PubMed/NCBI | |
Panyain N, Godinat A, Thawani AR, Lachiondo-Ortega S, Mason K, Elkhalifa S, Smith LM, Harrigan JA and Tate EW: Activity-based protein profiling reveals deubiquitinase and aldehyde dehydrogenase targets of a cyanopyrrolidine probe. RSC Med Chem. 12:1935–1943. 2021. View Article : Google Scholar : PubMed/NCBI | |
Krabill AD, Chen H, Hussain S, Feng C, Abdullah A, Das C, Aryal UK, Post CB, Wendt MK, Galardy PJ and Flaherty DP: Ubiquitin C-terminal hydrolase L1: Biochemical and cellular characterization of a covalent cyanopyrrolidine-based inhibitor. Chembiochem. 21:712–722. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kooij R, Liu S, Sapmaz A, Xin BT, Janssen GMC, van Veelen PA, Ovaa H, Dijke PT and Geurink PP: Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1 (UCHL1) activity in live cells and zebrafish embryos. J Am Chem Soc. 142:16825–16841. 2020. View Article : Google Scholar : PubMed/NCBI | |
Berkers CR, van Leeuwen FW, Groothuis TA, Peperzak V, van Tilburg EW, Borst J, Neefjes JJ and Ovaa H: Profiling proteasome activity in tissue with fluorescent probes. Mol Pharm. 4:739–748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Panyain N, Godinat A, Lanyon-Hogg T, Lachiondo-Ortega S, Will EJ, Soudy C, Mondal M, Mason K, Elkhalifa S, Smith LM, et al: Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1, with antifibrotic activity. J Am Chem Soc. 142:12020–12026. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roy B, Zhao J, Yang C, Luo W, Xiong T, Li Y, Fang X, Gao G, Singh CO, Madsen L, et al: CRISPR/cascade 9-mediated genome editing-challenges and opportunities. Front Genet. 9:2402018. View Article : Google Scholar : PubMed/NCBI | |
Takano T, Miyauchi A, Matsuzuka F, Yoshida H, Nakata Y, Kuma K and Amino N: PGP9.5 mRNA could contribute to the molecular-based diagnosis of medullary thyroid carcinoma. Eur J Cancer. 40:614–618. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sabapathy K and Lane DP: Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 15:13–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chibaya L, Karim B, Zhang H and Jones SN: Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 118:e20031931182021. View Article : Google Scholar : PubMed/NCBI | |
De S, Campbell C, Venkitaraman AR and Esposito A: Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the G2 checkpoint for DNA damage. Cell Rep. 30:2083–2093.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brinkmann K, Zigrino P, Witt A, Schell M, Ackermann L, Broxtermann P, Schüll S, Andree M, Coutelle O, Yazdanpanah B, et al: Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Rep. 3:881–891. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kabuta T, Setsuie R, Mitsui T, Kinugawa A, Sakurai M, Aoki S, Uchida K and Wada K: Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet. 17:1482–1496. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kabuta T, Furuta A, Aoki S, Furuta K and Wada K: Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 283:23731–23738. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nishikawa K, Li H, Kawamura R, Osaka H, Wang YL, Hara Y, Hirokawa T, Manago Y, Amano T, Noda M, et al: Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 304:176–183. 2003. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Synnott NC and Crown J: Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 170:213–219. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sporikova Z, Koudelakova V, Trojanec R and Hajduch M: Genetic markers in triple-negative breast cancer. Clin Breast Cancer. 18:e841–e850. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bazarian JJ, Biberthaler P, Welch RD, Lewis LM, Barzo P, Bogner-Flatz V, Gunnar Brolinson P, Büki A, Chen JY, Christenson RH, et al: Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet Neurol. 17:782–789. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meyer-Schwesinger C, Meyer TN, Sievert H, Hoxha E, Sachs M, Klupp EM, Münster S, Balabanov S, Carrier L, Helmchen U, et al: Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am J Pathol. 178:2044–2057. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Li F, Qi C, Mao X, Xu Y, Zhao Z, Wu H and Zhang Z: Plakoglobin is involved in cytoskeletal rearrangement of podocytes under the regulation of UCH-L1. Biochem Biophys Res Commun. 529:112–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui JH and Xie X: UCH-L1 expressed by podocytes: A potentially therapeutic target for lupus nephritis? Inflammation. 40:657–665. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Gao H, Hu Y, Fang Y, Qi C, Huang J, Cai X, Wu H, Ding X and Zhang Z: High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp Cell Res. 382:1114632019. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa T, Li J, Dong X, Potts JD, Tang D, Li DQ, Li DS and Cui T: Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFalpha-mediated vascular smooth muscle cell proliferation via suppressing ERK activation. Biochem Biophys Res Commun. 391:852–856. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Wu L, Wang K, Zhou X, Duan M, Wang X, Zhang Z and Liu X: Ubiquitin carboxyl terminal hydrolase L1 attenuates TNF-α-mediated vascular smooth muscle cell migration through suppression of NF-κB activation. Int Heart J. 59:1409–1415. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J and Li HH: The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 6:eaax48262020. View Article : Google Scholar : PubMed/NCBI |