1
|
Xiao S and Zhou L: Gastric cancer:
Metabolic and metabolomics perspectives (Review). Int J Oncol.
51:5–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Song Z, Wu Y, Yang J, Yang D and Fang X:
Progress in the treatment of advanced gastric cancer. Tumour Biol.
39:10104283177146262017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Falah M, Rayan M and Rayan A: A novel
paclitaxel conjugate with higher efficiency and lower toxicity: A
new drug candidate for cancer treatment. Int J Mol Sci.
20:49652019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Imran M, Rauf A, Abu-Izneid T, Nadeem M,
Shariati MA, Khan IA, Imran A, Orhanh IE, Rizwan M, Atif M, et al:
Luteolin, a flavonoid, as an anticancer agent: A review.
Biomedicine Pharmacotherapy. 112:1086122019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tesio AY and Robledo SN: Analytical
determinations of luteolin. Biofactors. 47:141–164. 2021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tuorkey MJ: Molecular targets of luteolin
in cancer. Eur J Cancer Prev. 25:65–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mani S, Swargiary G and Singh KK: Natural
agents targeting mitochondria in cancer. Int J Mol Sci.
21:69922020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gong G, Jiao Y, Pan Q, Tang H, An Y, Yuan
A, Wang K, Huang C, Dai W, Lu W, et al: Antitumor effect and
toxicity of an albumin-paclitaxel nanocarrier system constructed
via controllable alkali-induced conformational changes. ACS
Biomater Sci Eng. 5:1895–1906. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu X, Lai Y and Hua ZC: Apoptosis and
apoptotic body: Disease message and therapeutic target potentials.
Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang Y, He PY, Zhang Y and Li N: Natural
products targeting the mitochondria in cancers. Molecules.
26:922020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kalpage HA, Wan J, Morse PT, Zurek MP,
Turner AA, Khobeir A, Yazdi N, Hakim L, Liu J, Vaishnav A, et al:
Cytochrome c phosphorylation: Control of mitochondrial electron
transport chain flux and apoptosis. Int J Biochem Cell Biol.
121:1057042020. View Article : Google Scholar : PubMed/NCBI
|
12
|
He C, Jiang S, Jin H, Chen S, Lin G, Yao
H, Wang X, Mi P, Ji Z, Lin Y, et al: Mitochondrial electron
transport chain identified as a novel molecular target of SPIO
nanoparticles mediated cancer-specific cytotoxicity. Biomaterials.
83:102–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao RZ, Jiang S, Zhang L and Yu ZB:
Mitochondrial electron transport chain, ROS generation and
uncoupling (Review). Int J Mol Med. 44:3–15. 2019.PubMed/NCBI
|
14
|
Zhang B, Chu W, Wei P, Liu Y and Wei T:
Xanthohumol induces generation of reactive oxygen species and
triggers apoptosis through inhibition of mitochondrial electron
transfer chain complex I. Free Radic Biol Med. 89:486–497. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang Q, Wang L, Liu J, Cao WL, Pan Q and
Li M: Targeting the complex I and III of mitochondrial electron
transport chain as a potentially viable option in liver cancer
management. Cell Death Discovery. 7:2932021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yuan Y, Zhai Y, Chen J, Xu X and Wang H:
Kaempferol ameliorates oxygen-glucose
deprivation/reoxygenation-induced neuronal ferroptosis by
activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Pan Z, Cheng XL, Zhang K, Zhang X,
Qin Y, Fan J, Yan T, Han T, Shiu KK, et al: A red-light-activated
sulfonamide porphycene for highly efficient photodynamic therapy
against hypoxic tumor. Eur J Med Chem. 209:1128672021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu T, Linghu K, Huang S, Battino M,
Georgiev MI, Zengin G, Li D, Deng Y, Wang YT and Cao H: Flaxseed
extract induces apoptosis in human breast cancer MCF-7 cells. Food
Chem Toxicol. 127:188–196. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang X, Qin Y, Pan Z, Li M, Liu X, Chen
X, Qu G, Zhou L, Xu M, Zheng Q and Li D: Cannabidiol induces cell
cycle arrest and cell apoptosis in human gastric cancer SGC-7901
cells. Biomolecules. 9:3022019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lei L, Zhu Y, Gao W, Du X, Zhang M, Peng
Z, Fu S, Li X, Zhe W, Li X and Liu G: Alpha-lipoic acid attenuates
endoplasmic reticulum stress-induced insulin resistance by
improving mitochondrial function in HepG2 cells. Cell Signal.
28:1441–1450. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pan Z, Luo Y, Xia Y, Zhang X, Qin Y, Liu
W, Li M, Liu X, Zheng Q and Li D: Cinobufagin induces cell cycle
arrest at the S phase and promotes apoptosis in nasopharyngeal
carcinoma cells. Biomed Pharmacother. 122:1097632020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dergousova EA, Petrushanko IY, Klimanova
EA, Mitkevich VA, Ziganshin RH, Lopina OD and Makarov AA:
Enhancement of Na,K-ATPase activity as a result of removal of redox
modifications from cysteine residues of the a1 subunit: The effect
of reducing agents. Mol Biol (Mosk). 52:247–250. 2018.(In Russian).
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lin J, Zhao HS, Xiang LR, Xia J, Wang LL,
Li XN, Li JL and Zhang Y: Lycopene protects against
atrazine-induced hepatic ionic homeostasis disturbance by
modulating ion-transporting ATPases. J Nutr Biochem. 27:249–256.
2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang Y, Li J, Wei C, He Y, Cao Y, Zhang Y,
Sun W, Qiao B and He J: Amelioration of nonalcoholic fatty liver
disease by swertiamarin in fructose-fed mice. Phytomedicine.
59:1527822019. View Article : Google Scholar : PubMed/NCBI
|
25
|
OuYang Q, Tao N and Zhang M: A damaged
oxidative phosphorylation mechanism is involved in the antifungal
activity of citral against Penicillium digitatum. Front
Microbiol. 9:2392018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hanikoglu A, Ozben H, Hanikoglu F and
Ozben T: Hybrid compounds & oxidative stress induced apoptosis
in cancer therapy. Curr Med Chem. 27:2118–2132. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang Y, Karakhanova S, Hartwig W, D'Haese
JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and
mitochondrial ROS in cancer: Novel targets for anticancer therapy.
J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz
DR and Gius D: Emerging evidence for targeting mitochondrial
metabolic dysfunction in cancer therapy. J Clin Invest.
128:3682–3691. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guo R, Gu J, Zong S, Wu M and Yang M:
Structure and mechanism of mitochondrial electron transport chain.
Biomed J. 41:9–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Luo Y, Ma J and Lu W: The significance of
mitochondrial dysfunction in cancer. Int J Mol Sci. 21:55982020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhu H, Zhang W, Zhao Y, Shu X, Wang W,
Wang D, Yang Y, He Z, Wang X and Ying Y: GSK3β-mediated tau
hyperphosphorylation triggers diabetic retinal neurodegeneration by
disrupting synaptic and mitochondrial functions. Mol Neurodegener.
13:622018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Means RE and Katz SG: Balancing life and
death: BCL-2 family members at diverse ER-mitochondrial contact
sites. FEBS J. 289:7075–7112. 2022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Edlich F: BCL-2 proteins and apoptosis:
Recent insights and unknowns. Biochem Biophys Res Commun.
500:26–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Peña-Blanco A and García-Sáez AJ: Bax, bak
and beyond-mitochondrial performance in apoptosis. FEBS J.
285:416–431. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee YK, Bae K, Yoo HS and Cho SH: Benefit
of adjuvant traditional herbal medicine with chemotherapy for
resectable gastric cancer. Integr Cancer Ther. 17:619–627. 2018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sheng S, Zhang L and Chen G: Determination
of 5,7-dihydroxychromone and luteolin in peanut hulls by capillary
electrophoresis with a multiwall carbon nanotube/poly(ethylene
terephthalate) composite electrode. Food Chem. 145:555–561. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang XF, Zhang JL, Huang DP, Huang AS,
Huang HT, Liu Q, Liu XH and Liao HL: A network pharmacology
strategy to investigate the anti-inflammatory mechanism of luteolin
combined with in vitro transcriptomics and proteomics. Int
Immunopharmacol. 86:1067272020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gendrisch F, Esser PR, Schempp CM and
Wölfle U: Luteolin as a modulator of skin aging and inflammation.
BioFactors. 47:170–180. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hashemzaei M, Abdollahzadeh M, Iranshahi
M, Golmakani E, Rezaee R and Tabrizian K: Effects of luteolin and
luteolin-morphine co-administration on acute and chronic pain and
sciatic nerve ligated-induced neuropathy in mice. J Complement
Integr Med. 14:2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fruehauf JP and Meyskens FL Jr: Reactive
oxygen species: A breath of life or death? Clin Cancer Res.
13:789–794. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zheng YZ, Chen DF, Deng G, Guo R and Fu
ZM: The surrounding environments on the structure and antioxidative
activity of luteolin. J Mol Model. 24:1492018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lu J, Wu L, Wang X, Zhu J, Du J and Shen
B: Detection of mitochondria membrane potential to study CLIC4
knockdown-induced HN4 cell apoptosis in vitro. J Vis Exp.
563172018.PubMed/NCBI
|
43
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bauer TM and Murphy E: Role of
mitochondrial calcium and the permeability transition pore in
regulating cell death. Circ Res. 126:280–293. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dudko HV, Urban VA, Davidovskii AI and
Veresov VG: Structure-based modeling of turnover of Bcl-2 family
proteins bound to voltage-dependent anion channel 2 (VDAC2):
Implications for the mechanisms of proapoptotic activation of bak
and bax in vivo. Comput Biol Chem. 85:1072032020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Park SH, Ham S, Kwon TH, Kim MS, Lee DH,
Kang JW, Oh SR and Yoon DY: Luteolin induces cell cycle arrest and
apoptosis through extrinsic and intrinsic signaling pathways in
MCF-7 breast cancer cells. J Environ Pathol Toxicol Oncol.
33:219–231. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Beutner G, Alavian KN, Jonas EA and Porter
GA Jr: The mitochondrial permeability transition pore and ATP
synthase. Handb Exp Pharmacol. 240:21–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fernandez-Vizarra E and Zeviani M:
Mitochondrial disorders of the OXPHOS system. FEBS Lett.
595:1062–1106. 2021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cogliati S, Lorenzi I, Rigoni G, Caicci F
and Soriano ME: Regulation of mitochondrial electron transport
chain assembly. J Mol Biol. 430:4849–4873. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Affourtit C, Wong HS and Brand MD:
Measurement of proton leak in isolated mitochondria. Methods Mol
Biol. 1782:157–170. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Larosa V and Remacle C: Insights into the
respiratory chain and oxidative stress. Bioscience Reports.
38:BSR201714922018. View Article : Google Scholar : PubMed/NCBI
|
52
|
de Oliveira MR, Nabavi SF, Manayi A,
Daglia M, Hajheydari Z and Nabavi SM: Resveratrol and the
mitochondria: From triggering the intrinsic apoptotic pathway to
inducing mitochondrial biogenesis, a mechanistic view. Biochim
Biophys Acta. 1860:727–745. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Preston S, Korhonen PK, Mouchiroud L,
Cornaglia M, McGee SL, Young ND, Davis RA, Crawford S, Nowell C,
Ansell BRE, et al: Deguelin exerts potent nematocidal activity via
the mitochondrial respiratory chain. FASEB J. 31:4515–4532. 2017.
View Article : Google Scholar : PubMed/NCBI
|