1
|
Whelan J, Seddon B and Perisoglou M:
Management of osteosarcoma. Curr Treat Option Oncol. 7:444–455.
2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Picci P: Osteosarcoma (Osteogenic
sarcoma). Orphanet J Rare Dis. 2:1–4. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Giger ML, Bae KT and Macmahon H:
Computerized detection of pulmonary nodules in computed tomography
images. Invest Radiol. 29:459–465. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schaner EG, Chang AE, Doppman JL, Conkle
DM, Flye MW and Rosenberg SA: Comparison of computed and
conventional whole lung tomography in detecting pulmonary nodules:
A prospective radiologic-pathologic study. Am J Roentgenol.
131:51–54. 1978. View Article : Google Scholar
|
5
|
Obata H, Kuratsu S, Uchida A, Araki N,
Myoui A, Ueda T and Yoshikawa H: Analysis of organ selectivity in
the metastatic behavior of Dunn osteosarcoma. Clin Orthop Relat
Res. 398:212–222. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ciccarese F, Bazzocchi A, Ciminari R,
Righi A, Rocca M, Rimondi E, Picci P, Reggiani MLB, Albisinni U,
Zompatori M and Vanel D: The many faces of pulmonary metastases of
osteosarcoma: Retrospective study on 283 lesions submitted to
surgery. Eur J Radiol. 84:2679–2685. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakajima J, Murakawa T, Fukami T, Sano A,
Sugiura M and Takamoto S: Is finger palpation at operation
indispensable for pulmonary metastasectomy in colorectal cancer?
Ann Thorac Surg. 84:1680–1684. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cao K, Xu J and Zhao WQ: Artificial
intelligence on diabetic retinopathy diagnosis: An automatic
classification method based on grey level co-occurrence matrix and
naive Bayesian model. Int J Ophthalmol. 12:1158–1162. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang K, Shou Q, Ma SJ, Liebeskind D, Qiao
XJ, Saver J, Salamon N, Kim H, Yu Y, Xie Y, et al: Deep learning
detection of penumbral tissue on arterial spin labeling in stroke.
Stroke. 51:489–497. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wolterink JM, van Hamersvelt RW, Viergever
MA, Leiner T and Išgum I: Coronary artery centerline extraction in
cardiac CT angiography using a CNN-based orientation classifier.
Med Image Anal. 51:46–60. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
National Institutes for Food and Drug
Control, Cardio-thoracic Working Group, Chinese Society of
Radiology, . Chinese Medical Association: Expert consensus on the
rule and quality control of pulmonary nodule annotation based on
thoracic CT. Chin J Radiol. 53:9–15. 2019.(In Chinese).
|
12
|
Drnasin I, Grgić M and Gogić G: JavaScript
access to DICOM network and objects in web browser. J Digit
Imaging. 30:537–546. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang Y, Ahmad S, Fan J, Shen D and Yap
PT: Difficulty-aware hierarchical convolutional neural networks for
deformable registration of brain MR images. Med Image Anal.
67:1018172021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sarmah BK and Chakrabarty D: Examination
of proper randomness of the numbers generated by rand corporation
(1955) random number table: t-Test.
2015.DOI:10.15680/IJIRSET.2015.0410007.
|
15
|
Zhou Q, Fan Y, Wang Y, Qiao Y, Wang G,
Huang Y, Wang X, Wu N, Zhang G, Zheng X and Bu H: China national
guideline of classification, diagnosis and treatment for lung
nodules (2016 Version). Zhongguo Fei Ai Za Zhi. 19:793–798.
2016.(In Chinese). PubMed/NCBI
|
16
|
Ardila D, Kiraly AP, Bharadwaj S, Choi B,
Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, et al:
End-to-end lung cancer screening with three-dimensional deep
learning on low-dose chest computed tomography. Nat Med.
25:954–961. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Massion PP, Antic S, Ather S, Arteta C,
Brabec J, Chen H, Declerck J, Dufek D, Hickes W, Kadir T, et al:
Assessing the accuracy of a deep learning method to risk stratify
indeterminate pulmonary nodules. Am J Respir Crit Care Med.
202:241–249. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang C, Sun X, Dang K, Li K, Guo XW,
Chang J, Yu ZQ, Huang FY, Wu YS, Liang Z, et al: Toward an expert
level of lung cancer detection and classification using a deep
convolutional neural network. Oncologist. 24:1159–1165. 2019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Nibali A, He Z and Wollersheim D:
Pulmonary nodule classification with deep residual networks. Int J
Comput Assist Radiol Surg. 12:1799–1808. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tsuchiya H, Kanazawa Y, Abdel-Wanis ME,
Asada N, Abe S, Isu K, Sugita T and Tomita K: Effect of timing of
pulmonary metastases identification on prognosis of patients with
osteosarcoma: The Japanese musculoskeletal oncology group study. J
Clin Oncol. 20:3470–3477. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Briccoli A, Rocca M, Salone MC, Fiore MD,
Vanel D, Balladelli A and Alberghini M: ‘Bubble-like’ lung
metastases in osteosarcoma patients. Eur J Radiol. 71:144–146.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Iwano S, Makino N, Ikeda M, Itoh S,
Tadokoro M, Satake H and Ishigaki T: Solitary pulmonary nodules:
Optimal slice thickness of high-resolution CT in differentiating
malignant from benign. Clin Imaging. 28:322–328. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Brader P, Abramson SJ, Price AP, Ishill
NM, Emily ZC, Moskowitz CS, La Quaglia MP and Ginsberg MS: Do
characteristics of pulmonary nodules on computed tomography in
children with known osteosarcoma help distinguish whether the
nodules are malignant or benign? J Pediatr Surg. 46:729–735. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ghosh KM, Lee LH, Beckingsale TB, Gerrand
CH and Rankin KS: Indeterminate nodules in osteosarcoma: What's the
follow-up? Brit J Cancer. 118:634–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiao Q, Gu Y, Wu J, Wang Z and Huang Y:
Abstract P6-02-19: Machine learning based analysis of CT radiomics
for the simultaneous indeterminate pulmonary nodules of breast
cancer. Cancer Res. 79:P6–02-19-P6-02-19. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang C, Guo X, Xu Y, Han X, Cai J, Wang X
and Wang G: Lung metastases at the initial diagnosis of high-grade
osteosarcoma: Prevalence, risk factors and prognostic factors. A
large population-based cohort study. Sao Paulo Med J. 137:423–429.
2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Susam S, Cinkooglu A, Ceylan KC, Gürsoy S,
Kömürcüoğlu BE, Mertoğlu A, Çırak AK, Tuksavul F, Gayaf M, Güldaval
F, et al: Diagnostic success of transthoracic needle biopsy and
PET-CT for 1 to 2 cm solid indeterminate pulmonary nodules. Clin
Respir J. 14:453–461. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Grisanti F, Zulueta J, Rosales JJ, Morales
MI, Sancho L, Lozano MD, Mesa-Guzmán M and García-Velloso MJ:
Diagnostic accuracy of visual analysis versus dual time-point
imaging with 18F-FDG PET/CT for the characterization of
indeterminate pulmonary nodules with low uptake. Rev Esp Med Nucl
Imagen Mol (Engl Ed). 40:155–160. 2020.PubMed/NCBI
|