Advances in transcriptomics and proteomics in differentiated thyroid cancer: An updated perspective (Review)
- Authors:
- Shici Yang
- Gaohong Zhu
- Rui He
- Dong Fang
- Jiaojiao Feng
-
Affiliations: Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China - Published online on: July 27, 2023 https://doi.org/10.3892/ol.2023.13982
- Article Number: 396
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Du L, Zhao Z, Zheng R, Li H, Zhang S, Li R, Wei W and He J: Epidemiology of thyroid cancer: Incidence and mortality in China, 2015. Front Oncol. 10:17022020. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Global Burden of Disease Cancer Collaboration, . Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, et al: The global burden of cancer 2013. JAMA Oncol. 1:505–527. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lim H, Devesa SS, Sosa JA, Check D and Kitahara CM: Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Gosnell JE and Roman SA: Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol. 16:17–29. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bilder RM: Phenomics: Building scaffolds for biological hypotheses in the post-genomic era. Biol Psychiatry. 63:439–440. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hyman DM, Taylor BS and Baselga J: Implementing genome-driven oncology. Cell. 168:584–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song YS and Park YJ: Genomic characterization of differentiated thyroid carcinoma. Endocrinol Metab (Seoul). 34:1–10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumar D, Bansal G, Narang A, Basak T, Abbas T and Dash D: Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics. 16:2533–2544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Comiskey DF Jr, He H, Liyanarachchi S, Sheikh MS, Genutis LK, Hendrickson IV, Yu L, Brock PL and de la Chapelle A: Variants in LRRC34 reveal distinct mechanisms for predisposition to papillary thyroid carcinoma. J Med Genet. 57:519–527. 2020. View Article : Google Scholar : PubMed/NCBI | |
Corrado A, Aceto R, Silvestri R, Dell'Anno I, Ricci B, Miglietta S, Romei C, Giovannoni R, Poliseno L, Evangelista M, et al: Pro64His (rs4644) polymorphism within galectin-3 is a risk factor of differentiated thyroid carcinoma and affects the transcriptome of thyrocytes engineered via CRISPR/Cas9 system. Thyroid. 31:1056–1066. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Zhou X, Huang F, Wang W, Qi Y, Xu H, Yang S, Shen L, Fei X, Xie J, et al: The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing. Nat Commun. 8:155332017. View Article : Google Scholar : PubMed/NCBI | |
Song YS, Kang BH, Lee S, Yoo SK, Choi YS, Park J, Park DY, Lee KE, Seo JS and Park YJ: Genomic and transcriptomic characteristics according to size of papillary thyroid microcarcinoma. Cancers (Basel). 12:13452020. View Article : Google Scholar : PubMed/NCBI | |
He H, Liyanarachchi S, Li W, Comiskey DF Jr, Yan P, Bundschuh R, Turkoglu AM, Brock P, Ringel MD and de la Chapelle A: Transcriptome analysis discloses dysregulated genes in normal appearing tumor-adjacent thyroid tissues from patients with papillary thyroid carcinoma. Sci Rep. 11:141262021. View Article : Google Scholar : PubMed/NCBI | |
Morillo-Bernal J, Fernández LP and Santisteban P: FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1. Endocr Relat Cancer. 27:137–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barros-Filho MC, de Mello JBH, Marchi FA, Pinto CAL, da Silva IC, Damasceno PKF, Soares MBP, Kowalski LP and Rogatto SR: GADD45B transcript is a prognostic marker in papillary thyroid carcinoma patients treated with total thyroidectomy and radioiodine therapy. Front Endocrinol (Lausanne). 11:2692020. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Jiang H, Wen D, Hu J, Han L, Liu W, Xu W, Shi X, Wei W, Liao T, et al: Transcriptome analyses identify a metabolic gene signature indicative of dedifferentiation of papillary thyroid cancer. J Clin Endocrinol Metab. 104:3713–3725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Credendino SC, Moccia C, Amendola E, D'Avino G, Di Guida L, Clery E, Greco A, Bellevicine C, Brunetti A, De Felice M and De Vita G: FOXE1 gene dosage affects thyroid cancer histology and differentiation in vivo. Int J Mol Sci. 22:252020. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Huang Z, Zhu X, Cai H, Huang Y, Zhang X, Zhang Z, Lu H, An C, Niu L and Li Z: Clinical significance of the expression of co-stimulatory molecule B7-H3 in papillary thyroid carcinoma. Front Cell Dev Biol. 10:8192362022. View Article : Google Scholar : PubMed/NCBI | |
Akyay OZ, Gov E, Kenar H, Arga KY, Selek A, Tarkun İ, Canturk Z, Cetinarslan B, Gurbuz Y and Sahin B: Mapping the molecular basis and markers of papillary thyroid carcinoma progression and metastasis using global transcriptome and microRNA profiling. OMICS. 24:148–159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang P, Sun C, Wang C and Sun Y: Integrative analysis of methylation and transcriptome identified epigenetically regulated lncRNAs with prognostic relevance for thyroid cancer. Front Bioeng Biotechnol. 7:4392020. View Article : Google Scholar : PubMed/NCBI | |
Guan Y, Bhandari A, Xia E, Kong L, Zhang X and Wang O: Downregulating integrin subunit alpha 7 (ITGA7) promotes proliferation, invasion, and migration of papillary thyroid carcinoma cells through regulating epithelial-to-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 52:116–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ramírez-Moya J, Miliotis C, Baker AR, Gregory RI, Slack FJ and Santisteban P: An ADAR1-dependent RNA editing event in the cyclin-dependent kinase CDK13 promotes thyroid cancer hallmarks. Mol Cancer. 20:1152021. View Article : Google Scholar : PubMed/NCBI | |
Wang ML and Liu JX: MALAT1 rs619586 polymorphism functions as a prognostic biomarker in the management of differentiated thyroid carcinoma. J Cell Physiol. 235:1700–1710. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saqcena M, Leandro-Garcia LJ, Maag J, Tchekmedyian V, Krishnamoorthy GP, Tamarapu PP, Tiedje V, Reuter V, Knauf JA, de Stanchina E, et al: SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Cancer Discov. 11:1158–1175. 2021. View Article : Google Scholar : PubMed/NCBI | |
Augenlicht A, Saiselet M, Decaussin-Petrucci M, Andry G, Dumont JE and Maenhaut C: MiR-7-5p inhibits thyroid cell proliferation by targeting the EGFR/MAPK and IRS2/PI3K signaling pathways. Oncotarget. 12:1587–1599. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou S, Xie X, Zhao J, Wu C, Li N, Meng Z, Cai C and Tan J: Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20. Front Oncol. 10:5663652021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Sun W, Wang Z, Lv C, Zhang T, Zhang D, Dong W, Shao L, He L, Ji X, et al: FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 41:422022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ruan X, Zhang P, Yu Y, Gao M, Yuan S, Zhao Z, Yang J and Zhao L: TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57KIP2 repression. Oncogene. 37:2773–2792. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P, Zou K, Li W, Sun Y, Wang R, et al: CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ. 28:1347–1363. 2021. View Article : Google Scholar : PubMed/NCBI | |
Long MY, Chen JW, Zhu Y, Luo DY, Lin SJ, Peng XZ, Tan LP and Li HH: Comprehensive circular RNA profiling reveals the regulatory role of circRNA_0007694 in papillary thyroid carcinoma. Am J Transl Res. 12:1362–1378. 2020.PubMed/NCBI | |
Ramírez-Moya J, Wert-Lamas L, Acuña-Ruíz A, Fletcher A, Wert-Carvajal C, McCabe CJ, Santisteban P and Riesco-Eizaguirre G: Identification of an interactome network between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as a new tumor suppressor. Sci Rep. 12:77062022. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159:676–690. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, Song YS, Cho SW, Won JK, Shin JY, et al: Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 12:e10062392016. View Article : Google Scholar : PubMed/NCBI | |
Costa V, Esposito R, Ziviello C, Sepe R, Bim LV, Cacciola NA, Decaussin-Petrucci M, Pallante P, Fusco A and Ciccodicola A: New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma. Oncotarget. 6:11242–11251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song YS, Won JK, Yoo SK, Jung KC, Kim MJ, Kim SJ, Cho SW, Lee KE, Yi KH, Seo JS and Park YJ: Comprehensive transcriptomic and genomic profiling of subtypes of follicular variant of papillary thyroid carcinoma. Thyroid. 28:1468–1478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnson DN, Furtado LV, Long BC, Zhen CJ, Wurst M, Mujacic I, Kadri S, Segal JP, Antic T and Cipriani NA: Noninvasive follicular thyroid neoplasms with papillary-like nuclear features are genetically and biologically similar to adenomatous nodules and distinct from papillary thyroid carcinomas with extensive follicular growth. Arch Pathol Lab Med. 142:838–850. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan A, Kakudo K, et al: Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: A paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2:1023–1029. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pool C, Walter V, Bann D, Goldenberg D, Broach J, Hennessy M, Cottrill E, Washburn E, Williams N, Crist H, et al: Molecular characterization of tumors meeting diagnostic criteria for the non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Virchows Arch. 474:341–351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al: Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 10:27642019. View Article : Google Scholar : PubMed/NCBI | |
Berdelou A, Lamartina L, Klain M, Leboulleux S and Schlumberger M: Treatment of refractory thyroid cancer. Endocr Relat Cancer. 25:R209–R223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goossens N, Nakagawa S, Sun X and Hoshida Y: Cancer biomarker discovery and validation. Transl Cancer Res. 4:256–269. 2015.PubMed/NCBI | |
Bossuyt PM: Where are all the new omics-based tests? Clin Chem. 60:1256–1257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boutros PC: The path to routine use of genomic biomarkers in the cancer clinic. Genome Res. 25:1508–1513. 2015. View Article : Google Scholar : PubMed/NCBI | |
Capdevila J, Matos I, Mancuso FM, Iglesias C, Nuciforo P, Zafon C, Palmer HG, Ogbah Z, Muiños L, Hernando J, et al: Identification of expression profiles defining distinct prognostic subsets of radioactive-iodine refractory differentiated thyroid cancer from the DECISION trial. Mol Cancer Ther. 19:312–317. 2020. View Article : Google Scholar : PubMed/NCBI | |
Colombo C, Minna E, Gargiuli C, Muzza M, Dugo M, De Cecco L, Pogliaghi G, Tosi D, Bulfamante G, Greco A, et al: The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer. J Exp Clin Cancer Res. 39:2452020. View Article : Google Scholar : PubMed/NCBI | |
Siraj S, Masoodi T, Siraj AK, Azam S, Qadri Z, Parvathareddy SK, Bu R, Siddiqui KS, Al-Sobhi SS, AlDawish M and Al-Kuraya KS: APOBEC SBS13 mutational signature-A novel predictor of radioactive iodine refractory papillary thyroid carcinoma. Cancers (Basel). 14:15842022. View Article : Google Scholar : PubMed/NCBI | |
Franco AT, Ricarte-Filho JC, Laetsch TW and Bauer AJ: Oncogene-specific inhibition in the treatment of advanced pediatric thyroid cancer. J Clin Invest. 131:e1526962021. View Article : Google Scholar : PubMed/NCBI | |
Boufraqech M and Nilubol N: Multi-omics signatures and translational potential to improve thyroid cancer patient outcome. Cancers (Basel). 11:19882019. View Article : Google Scholar : PubMed/NCBI | |
Mainini V, Lalowski M, Gotsopoulos A, Bitsika V, Baumann M and Magni F: MALDI-imaging mass spectrometry on tissues. Methods Mol Biol. 1243:139–164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ucal Y, Eravci M, Tokat F, Duren M, Ince U and Ozpinar A: Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma. EuPA Open Proteom. 17:1–6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ucal Y, Tokat F, Duren M, Ince U and Ozpinar A: Peptide profile differences of noninvasive follicular thyroid neoplasm with papillary-like nuclear features, encapsulated follicular variant, and classical papillary thyroid carcinoma: An application of matrix-assisted laser desorption/ionization mass spectrometry imaging. Thyroid. 29:1125–1137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Umbricht CB, Fisher K, Bishop J, Shi Q and Chen S: Identification of novel biomarker and therapeutic target candidates for diagnosis and treatment of follicular carcinoma. J Proteomics. 166:59–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gawin M, Wojakowska A, Pietrowska M, Marczak Ł, Chekan M, Jelonek K, Lange D, Jaksik R, Gruca A and Widłak P: Proteome profiles of different types of thyroid cancers. Mol Cell Endocrinol. 472:68–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kurczyk A, Gawin M, Chekan M, Wilk A, Łakomiec K, Mrukwa G, Frątczak K, Polanska J, Fujarewicz K, Pietrowska M and Widlak P: Classification of thyroid tumors based on mass spectrometry imaging of tissue microarrays; a single-pixel approach. Int J Mol Sci. 21:62892020. View Article : Google Scholar : PubMed/NCBI | |
Farrokhi Yekta R, Arefi Oskouie A, Rezaei Tavirani M, Mohajeri-Tehrani MR and Soroush AR: Decreased apolipoprotein A4 and increased complement component 3 as potential markers for papillary thyroid carcinoma: A proteomic study. Int J Biol Markers. 33:455–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao W, Zhao Y, Mao Y, Su T, Zhong Y, Wang S, Zhai R, Cheng J, Fang X, et al: Comparative glycoproteomic profiling of human body fluid between healthy controls and patients with papillary thyroid carcinoma. J Proteome Res. 19:2539–2552. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhou S, Wang D, Wei T, Zhu J and Li Z: Complement C4-A and plasminogen as potential biomarkers for prediction of papillary thyroid carcinoma. Front Endocrinol (Lausanne). 12:7376382021. View Article : Google Scholar : PubMed/NCBI | |
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, et al: Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRASQ61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett. 467:96–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Capitoli G, Piga I, Galimberti S, Leni D, Pincelli AI, Garancini M, Clerici F, Mahajneh A, Brambilla V, Smith A, et al: MALDI-MSI as a complementary diagnostic tool in cytopathology: A pilot study for the characterization of thyroid nodules. Cancers (Basel). 11:13772019. View Article : Google Scholar : PubMed/NCBI | |
García-Vence M, Chantada-Vázquez MDP, Cameselle-Teijeiro JM, Bravo SB and Núñez C: A novel nanoproteomic approach for the identification of molecular targets associated with thyroid tumors. Nanomaterials (Basel). 10:23702020. View Article : Google Scholar : PubMed/NCBI | |
Dai J, Yu X, Han Y, Chai L, Liao Y, Zhong P, Xie R, Sun X, Huang Q, Wang J, et al: TMT-labeling proteomics of papillary thyroid carcinoma reveal invasive biomarkers. J Cancer. 11:6122–6132. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhan S, Wang T, Wang M, Li J and Ge W: In-depth proteomics analysis to identify biomarkers of papillary thyroid cancer patients older than 45 years with different degrees of lymph node metastases. Proteomics Clin Appl. 13:e19000302019. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Zhang Y, Yu S, Li S, Jiang W, Zhu Y, Xu Y, Yang C, Tian G, Mi J, et al: PDLIM5 identified by label-free quantitative proteomics as a potential novel biomarker of papillary thyroid carcinoma. Biochem Biophys Res Commun. 499:338–344. 2018. View Article : Google Scholar : PubMed/NCBI | |
Orlandella FM, Mariniello RM, Iervolino PLC, Auletta L, De Stefano AE, Ugolini C, Greco A, Mirabelli P, Pane K, Franzese M, et al: Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways. Mol Carcinog. 58:1181–1193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo D, Zhan S, Xia W, Huang L, Ge W and Wang T: Proteomics study of serum exosomes from papillary thyroid cancer patients. Endocr Relat Cancer. 25:879–891. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Bao W, Yang YT, Fu Q, Bai Y and Liu Y: Proteomic analysis of the papillary thyroid microcarcinoma. Ann Endocrinol (Paris). 80:293–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mondaza-Hernandez JL, Moura DS, Lopez-Alvarez M, Sanchez-Bustos P, Blanco-Alcaina E, Castilla-Ramirez C, Collini P, Merino-Garcia J, Zamora J, Carrillo-Garcia J, et al: ISG15 as a prognostic biomarker in solitary fibrous tumour. Cell Mol Life Sci. 79:4342022. View Article : Google Scholar : PubMed/NCBI | |
Kariri YA, Alsaleem M, Joseph C, Alsaeed S, Aljohani A, Shiino S, Mohammed OJ, Toss MS, Green AR and Rakha EA: The prognostic significance of interferon-stimulated gene 15 (ISG15) in invasive breast cancer. Breast Cancer Res Treat. 185:293–305. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang J, Qiao H, Huyan L, Liu B, Li C, Jiang J, Zhao F, Wang H and Yan J: ISG15 is downregulated by KLF12 and implicated in maintenance of cancer stem cell-like features in cisplatin-resistant ovarian cancer. J Cell Mol Med. 25:4395–4407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qu T, Zhang W, Yan C, Ren D, Wang Y, Guo Y, Guo Q, Wang J, Liu L, Han L, et al: ISG15 targets glycosylated PD-L1 and promotes its degradation to enhance antitumor immune effects in lung adenocarcinoma. J Transl Med. 21:3412023. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Yao Z, Sun Y, Li W, Liu Y, Liang K, Liu Y, Qin J, Hou X and Chen L: Deciphering novel biomarkers of lymph node metastasis of thyroid papillary microcarcinoma using proteomic analysis of ultrasound-guided fine-needle aspiration biopsy samples. J Proteomics. 204:1034142019. View Article : Google Scholar : PubMed/NCBI | |
Mishall KM, Beadnell TC, Kuenzi BM, Klimczak DM, Superti-Furga G, Rix U and Schweppe RE: Sustained activation of the AKT/mTOR and MAP kinase pathways mediate resistance to the Src inhibitor, dasatinib, in thyroid cancer. Oncotarget. 8:103014–103031. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krishnan A, Berthelet J, Renaud E, Rosigkeit S, Distler U, Stawiski E, Wang J, Modrusan Z, Fiedler M, Bienz M, et al: Proteogenomics analysis unveils a TFG-RET gene fusion and druggable targets in papillary thyroid carcinomas. Nat Commun. 11:20562020. View Article : Google Scholar : PubMed/NCBI | |
Rajalingam K and Dikic I: SnapShot: Expanding the ubiquitin code. Cell. 164:1074–1074.e1. 2016. View Article : Google Scholar : PubMed/NCBI |