Advance in vasculogenic mimicry in ovarian cancer (Review)
- Authors:
- Xinyuan Tian
- Qin Si
- Menghe Liu
- Jianping Shi
- Rongwei Zhao
- Yang Xiong
- Lei Yu
- Hongwei Cui
- Haibin Guan
-
Affiliations: School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Scientific Research Department, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China, School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Department of Obstetrics and Gynecology, Inner Mongolia Medical University, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China, Department of Hepatobiliary Surgery, General Surgery Department of Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region 017000, P.R. China, Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China, Scientific Research Department, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China - Published online on: September 5, 2023 https://doi.org/10.3892/ol.2023.14043
- Article Number: 456
-
Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ayala-Dominguez L, Olmedo-Nieva L, Munoz-Bello JO, Contreras-Paredes A, Manzo-Merino J, Martinez-Ramirez I and Lizano M: Mechanisms of vasculogenic mimicry in ovarian cancer. Front Oncol. 9:9982019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li Q, Li XY, Yang QY, Xu WW and Liu GL: Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res. 31:162012. View Article : Google Scholar : PubMed/NCBI | |
Yin M, Li C, Li X, Lou G, Miao B, Liu X, Meng F, Zhang H, Chen X, Sun M, et al: Over-expression of LAPTM4B is associated with poor prognosis and chemotherapy resistance in stages III and IV epithelial ovarian cancer. J Surg Oncol. 104:29–36. 2011. View Article : Google Scholar : PubMed/NCBI | |
Williams TI, Toups KL, Saggese DA, Kalli KR, Cliby WA and Muddiman DC: Epithelial ovarian cancer: Disease etiology, treatment, detection, and investigational gene, metabolite, and protein biomarkers. J Proteome Res. 6:2936–2962. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lino-Silva LS: Ovarian carcinoma: Pathology review with an emphasis in their molecular characteristics. Chin Clin Oncol. 9:452020. View Article : Google Scholar : PubMed/NCBI | |
McCluggage WG, Judge MJ, Clarke BA, Davidson B, Gilks CB, Hollema H, Ledermann JA, Matias-Guiu X, Mikami Y, Stewart CJ, et al: Data set for reporting of ovary, fallopian tube and primary peritoneal carcinoma: Recommendations from the international collaboration on cancer reporting (ICCR). Mod Pathol. 28:1101–1122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Momenimovahed Z, Tiznobaik A, Taheri S and Salehiniya H: Ovarian cancer in the world: Epidemiology and risk factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI | |
El-Sherif A, El-Sherif S, Taylor AH and Ayakannu T: Ovarian cancer: Lifestyle, diet and nutrition. Nutr Cancer. 73:1092–1107. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan YZ and Sun M: Molecular regulation of vasculogenic mimicry in tumors and potential tumor-target therapy. World J Gastrointest Surg. 2:117–127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Su P, Hao Q, Zhang X, Xia L and Zhang Y: A Chinese classical prescription Guizhi-Fuling Wan in treatment of ovarian cancer: An overview. Biomed Pharmacother. 153:1134012022. View Article : Google Scholar : PubMed/NCBI | |
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chavoshi H, Poormolaie N, Vahedian V, Kazemzadeh H, Mir A, Nejabati HR, Behroozi J, Isazadeh A, Hajezimian S, Nouri M and Maroufi NF: Vascular mimicry: A potential therapeutic target in breast cancer. Pathol Res Pract. 234:1539222022. View Article : Google Scholar : PubMed/NCBI | |
Marques dos Reis E and Berti FV: Vasculogenic mimicry-an overview. Methods Mol Biol. 2514:3–13. 2022. View Article : Google Scholar : PubMed/NCBI | |
Salinas-Vera YM, Gallardo-Rincón D, Ruíz-García E, Marchat LA, Valdés J, Vázquez-Calzada C and López-Camarillo C: A three-dimensional culture-based assay to detect early stages of vasculogenic mimicry in ovarian cancer cells. Methods Mol Biol. 2514:53–60. 2022. View Article : Google Scholar : PubMed/NCBI | |
Folberg R and Maniotis AJ: Vasculogenic mimicry. APMIS. 112:508–525. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang SY, Ke YQ, Lu GH, Song ZH, Yu L, Xiao S, Sun XL, Jiang XD, Yang ZL and Hu CC: Vasculogenic mimicry is a prognostic factor for postoperative survival in patients with glioblastoma. J Neurooncol. 112:339–345. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Lin ZX, Lin GS, Zhou CF, Chen YP, Wang XF and Zheng ZQ: Classification of microvascular patterns via cluster analysis reveals their prognostic significance in glioblastoma. Hum Pathol. 46:120–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quaresmini D and Guida M: Neoangiogenesis in melanoma: An issue in biology and systemic treatment. Front Immunol. 11:5849032020. View Article : Google Scholar : PubMed/NCBI | |
Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A, Franco P, Altucci L, Florio T, Stoppelli MP and Colucci-D'Amato L: Histone deacetylase inhibitors impair vasculogenic mimicry from glioblastoma cells. Cancers (Basel). 11:7472019. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Zhang S, Wu W, Zhang N and Wang J: Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res. 166:1055072021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shi F, Tao R, Wu J, Gu J, Yang R and Wu S: The relationship Between UBE2C and AGGF1 overexpression and tumor angiogenesis in non-small cell lung cancer. Cancer Manag Res. 13:5919–5930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Song W, Liu Z, Zhao X, Cao W and Sun B: Wnt3a promotes the vasculogenic mimicry formation of colon cancer via Wnt/β-catenin signaling. Int J Mol Sci. 16:18564–18579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Yang Z, Yu Y and Zhang P: HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer. Int J Biol Macromol. 222:2225–2243. 2022. View Article : Google Scholar : PubMed/NCBI | |
Salem A and Salo T: Vasculogenic mimicry in head and neck squamous cell carcinoma-time to take notice. Front Oral Health. 2:6668952021. View Article : Google Scholar : PubMed/NCBI | |
You B, Sun Y, Luo J, Wang K, Liu Q, Fang R, Liu B, Chou F, Wang R, Meng J, et al: Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene. 40:1674–1689. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV and Hendrix MJ: Tumor cell vasculogenic mimicry: From controversy to therapeutic promise. Am J Pathol. 181:1115–1125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Andreucci E, Peppicelli S, Ruzzolini J, Bianchini F, Biagioni A, Papucci L, Magnelli L, Mazzanti B, Stecca B and Calorini L: The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. J Mol Med (Berl). 98:1431–1446. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Ma T, Liu N, Hong H, Yu L, Lyu D, Meng X, Wang B and Jiang X: Immunotherapy checkpoints in ovarian cancer vasculogenic mimicry: Tumor immune microenvironments, and drugs. Int Immunopharmacol. 111:1091162022. View Article : Google Scholar : PubMed/NCBI | |
Annett S, Moore G, Short A, Marshall A, McCrudden C, Yakkundi A, Das S, McCluggage WG, Nelson L, Harley I, et al: FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. Br J Cancer. 122:361–371. 2020. View Article : Google Scholar : PubMed/NCBI | |
Graupera M and Potente M: Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res. 319:1348–1355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, García-Quiroz J, Avila E and Díaz L: Vasculogenic mimicry in breast cancer: Clinical relevance and drivers. Cells. 10:17582021. View Article : Google Scholar : PubMed/NCBI | |
Giannotta M, Trani M and Dejana E: VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Dev Cell. 26:441–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG and Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 277:225–258. 1997. View Article : Google Scholar : PubMed/NCBI | |
Koshikawa N, Giannelli G, Cirulli V, Miyazaki K and Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 148:615–624. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Wang J, Fan L, Li X, Liu N, Luo W, Wang J and Wang Y and Wang Y: cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget. 7:24050–24062. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Sun B, Zhao X, Du J, Gu Q, Liu Y, Cheng R and Dong X: Wnt5a promotes vasculogenic mimicry and epithelial-mesenchymal transition via protein kinase Cα in epithelial ovarian cancer. Oncol Rep. 32:771–779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bapat SA, Mali AM, Koppikar CB and Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65:3025–3029. 2005. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi H, Suzuki Y and Natori Y: The evolving landscape of cancer stem cells and ways to overcome cancer heterogeneity. Cancers (Basel). 11:5322019. View Article : Google Scholar : PubMed/NCBI | |
Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, Cao MX, Yu XH, Pang X, Zhang M, et al: Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif. 52:e126002019. View Article : Google Scholar : PubMed/NCBI | |
Gest C, Mirshahi P, Li H, Pritchard LL, Joimel U, Blot E, Chidiac J, Poletto B, Vannier JP, Varin R, et al: Ovarian cancer: Stat3, RhoA and IGF-IR as therapeutic targets. Cancer Lett. 317:207–217. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sicard AA, Dao T, Suarez NG and Annabi B: Diet-derived gallated catechins prevent TGF-β-mediated epithelial-mesenchymal transition, cell migration and vasculogenic mimicry in chemosensitive ES-2 ovarian cancer cells. Nutr Cancer. 73:169–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Zhang D, Zhao N and Zhao X: Epithelial-to-endothelial transition and cancer stem cells: Two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget. 8:30502–30510. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, Gu Q, Zhao J, Dong X, Liu Z and Che N: Dual effects of collagenase-3 on melanoma: Metastasis promotion and disruption of vasculogenic mimicry. Oncotarget. 6:8890–8899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su M, Wei W, Xu X, Wang X, Chen C, Su L and Zhang Y: Role of hCG in vasculogenic mimicry in OVCAR-3 ovarian cancer cell line. Int J Gynecol Cancer. 21:1366–1374. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Fan C, Huang H, Zhu C, Su M and Zhang Y: Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 12:459–466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu P, Wang X and Mao H: Role of X-linked inhibitor of apoptosis-associated factor-1 in vasculogenic mimicry in ovarian cancer. Mol Med Rep. 16:325–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ashburn TT and Thor KB: Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 3:673–683. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Long S, Deng Z and Wu W: Positive role of Chinese herbal medicine in cancer immune regulation. Am J Chin Med. 48:1577–1592. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C and Carlos-Reyes Á: Regulation networks driving vasculogenic mimicry in solid tumors. Front Oncol. 9:14192019. View Article : Google Scholar : PubMed/NCBI | |
Mahfouz N, Tahtouh R, Alaaeddine N, El Hajj J, Sarkis R, Hachem R, Raad I and Hilal G: Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One. 12:e01792022017. View Article : Google Scholar : PubMed/NCBI | |
Wu H and Huang J: Optimization of protein and peptide drugs based on the mechanisms of kidney clearance. Protein Pept Lett. 25:514–521. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pinto MP, Sotomayor P, Carrasco-Avino G, Corvalan AH and Owen GI: Escaping antiangiogenic therapy: Strategies employed by cancer cells. Int J Mol Sci. 17:14892016. View Article : Google Scholar : PubMed/NCBI | |
Vasudev NS and Reynolds AR: Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis. 17:471–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu XS, Sun W, Ge CY, Zhang WZ and Fan YZ: Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol. 42:2103–2115. 2013. View Article : Google Scholar : PubMed/NCBI | |
Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, Hacker E and Elmaci I: Noscapine, a non-addictive opioid and microtubule-inhibitor in potential treatment of glioblastoma. Neurochem Res. 44:1796–1806. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su W, Huang L, Ao Q, Zhang Q, Tian X, Fang Y and Lu Y: Noscapine sensitizes chemoresistant ovarian cancer cells to cisplatin through inhibition of HIF-1α. Cancer Lett. 305:94–99. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peach ML, Beedie SL, Chau CH, Collins MK, Markolovic S, Luo W, Tweedie D, Steinebach C, Greig NH, Gütschow M, et al: Antiangiogenic activity and in silico cereblon binding analysis of novel thalidomide analogs. Molecules. 25:56832020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Li M, Gu Y, Liu Z, Xu S, Cui Y and Sun B: Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J Exp Clin Cancer Res. 27:602008. View Article : Google Scholar : PubMed/NCBI | |
Nozawa-Suzuki N, Nagasawa H, Ohnishi K and Morishige K: The inhibitory effect of hypoxic cytotoxin on the expansion of cancer stem cells in ovarian cancer. Biochem Biophys Res Commun. 457:706–711. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X and Luo J: Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res. 164:1053732021. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM and Murmu N: Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res. 121:52–62. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bae H, Lee JY, Yang C, Song G and Lim W: Fucoidan derived from fucus vesiculosus inhibits the development of human ovarian cancer via the disturbance of calcium homeostasis, endoplasmic reticulum stress, and angiogenesis. Mar Drugs. 18:452020. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sicard AA, Dao T, Suarez NG and Annabi B: Diet-derived gallated catechins prevent TGF-beta-mediated epithelial-mesenchymal transition, cell migration and vasculogenic mimicry in chemosensitive ES-2 ovarian cancer cells. Nutr Cancer. 73:169–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Chen Z, Wang Y, Guo Z and Wang X: Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalton Trans. 47:5049–5054. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1alpha to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One. 9:e1038872014. View Article : Google Scholar : PubMed/NCBI | |
Xu MR, Wei PF, Suo MZ, Hu Y, Ding W, Su L, Zhu YD, Song WJ, Tang GH, Zhang M and Li P: Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231. Biomed Res Int. 2019:65432302019.PubMed/NCBI | |
Xiao T, Zhong W, Zhao J, Qian B, Liu H, Chen S, Qiao K, Lei Y, Zong S, Wang H, et al: Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway. Cell Death Dis. 9:9062018. View Article : Google Scholar : PubMed/NCBI | |
Phillips TM and Lindsey JS: Carcinoma cell-specific Mig-7: A new potential marker for circulating and migrating cancer cells. Oncol Rep. 13:37–44. 2005.PubMed/NCBI | |
Crouch S, Spidel CS and Lindsey JS: HGF and ligation of alphavbeta5 integrin induce a novel, cancer cell-specific gene expression required for cell scattering. Exp Cell Res. 292:274–287. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Yin M, Li X, Cao G, Qi J, Lou G, Sheng S, Kou J, Chen K and Yu B: Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer. Oncotarget. 7:27552–27566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Zou X, Zhang T, Shen J, Yin Y and Xiang J: The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol. 132:730–738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Lv C, Zhang B, Zhou Q and Cao Z: MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA. 23:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Zong ZH, Liu Y, Chen S, Wang LL and Zhao Y: circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shao Y and Lu B: The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: Clinical insights for anti-angiogenic therapy in cancers. Cancer Metastasis Rev. 41:173–191. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ke Y, Huang M, Huang S and Liang Y: Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry of hypoxic human glioma cells. Exp Ther Med. 9:977–981. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, Zhang W and Yang J: Histone deacetylase 6 in cancer. J Hematol Oncol. 11:1112018. View Article : Google Scholar : PubMed/NCBI | |
Treps L, Faure S and Clere N: Vasculogenic mimicry, a complex and devious process favoring tumorigenesis-interest in making it a therapeutic target. Pharmacol Ther. 223:1078052021. View Article : Google Scholar : PubMed/NCBI | |
Ledermann JA, Embleton AC, Raja F, Perren TJ, Jayson GC, Rustin GJS, Kaye SB, Hirte H, Eisenhauer E, Vaughan M, et al: Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 387:1066–1074. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim D, Do Y, Kwon BS, Chang W, Lee MS, Kim J and Cho JG: Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep. 53:291–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Zhang D, Yao Z, Lin X, Liu J, Gu Q, Dong X, Liu F, Wang Y, Yao N, et al: Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol Ther. 18:205–213. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Li H, Liu J, Ning L, Zhao D and Liu S: The relationship between TEM8 and early diagnosis and prognosis of lung cancer. Minerva Med. 112:359–364. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Chen W, Zhang X, Huang B, Chen A, He Y, Wang J and Li X: Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes. Sci Rep. 6:230562016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xu Y, Ma J, Pang X and Dong M: Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor. Sci Rep. 7:405242017. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Yu W, Lv S, Zhang C and Tian Y: MiR-302a inhibits the tumorigenicity of ovarian cancer cells by suppression of SDC1. Int J Clin Exp Pathol. 8:4869–4880. 2015.PubMed/NCBI | |
Wang Y, Tong L, Wang J, Luo J, Tang J, Zhong L, Xiao Q, Niu W, Li J, Zhu J, et al: cRGD-functionalized nanoparticles for combination therapy of anti-endothelium dependent vessels and anti-vasculogenic mimicry to inhibit the proliferation of ovarian cancer. Acta Biomater. 94:495–504. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dueñas-Garcia OF, Diaz-Sotomayor M and Rico-Olvera H: Utility of the pulsatility index of the uterine arteries and human chorionic gonadotropin in a series of cases of placenta accreta. J Obstet Gynaecol Res. 37:1112–1116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Chen Y, Zhang M, Zhou H and Wu H: Relationship between CD177 and the vasculogenic mimicry, clinicopathological parameters, and prognosis of epithelial ovarian cancer. Ann Palliat Med. 9:3985–3992. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Yang B, Cao Q and Wu X: Association of vasculogenic mimicry formation and CD133 expression with poor prognosis in ovarian cancer. Gynecol Obstet Invest. 81:529–536. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Zhu B, Wu S, Zhou L, Song W, Gong X and Wang D: Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagn Pathol. 12:232017. View Article : Google Scholar : PubMed/NCBI | |
Recouvreux MS, Miao J, Gozo MC, Wu J, Walts AE, Karlan BY and Orsulic S: FOXC2 promotes vasculogenic mimicry in ovarian cancer. Cancers (Basel). 14:48512022. View Article : Google Scholar : PubMed/NCBI | |
Ocaña OH, Córcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A and Nieto MA: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 22:709–724. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Jia X, Zuo B, He J, Yang J and He Y: A novel monoclonal antibody targeting a novel epitope of VE-cadherin inhibits vasculogenic mimicry of lung cancer cells. Oncol Rep. 39:2837–2844. 2018.PubMed/NCBI | |
Liu LZ, Jing Y, Jiang LL, Jiang XE, Jiang Y, Rojanasakul Y and Jiang BH: Acacetin inhibits VEGF expression, tumor angiogenesis and growth through AKT/HIF-1α pathway. Biochem Biophys Res Commun. 413:299–305. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morales-Guadarrama G, Mendez-Perez EA, Garcia-Quiroz J, Avila E, Garcia-Becerra R, Zentella-Dehesa A, Larrea F and Díaz L: Endothelium-dependent induction of vasculogenic mimicry in human triple-negative breast cancer cells is inhibited by calcitriol and curcumin. Int J Mol Sci. 23:76592022. View Article : Google Scholar : PubMed/NCBI | |
Selick HE, Beresford AP and Tarbit MH: The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today. 7:109–116. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tang HS, Feng YJ and Yao LQ: Angiogenesis, vasculogenesis, and vasculogenic mimicry in ovarian cancer. Int J Gynecol Cancer. 19:605–610. 2009. View Article : Google Scholar : PubMed/NCBI |