1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bradford CR, Ferlito A, Devaney KO,
Mäkitie AA and Rinaldo A: Prognostic factors in laryngeal squamous
cell carcinoma. Laryngoscope Investig Otolaryngol. 5:74–81. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Anschuetz L, Shelan M, Dematte M, Schubert
AD, Giger R and Elicin O: Long-term functional outcome after
laryngeal cancer treatment. Radiat Oncol. 14:1012019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lasda E and Parker R: Circular RNAs:
Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue
X, Bo Y, Guan X, Li Z, Guo Y, et al: circPARD3 drives malignant
progression and chemoresistance of laryngeal squamous cell
carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR
pathway. Mol Cancer. 19:1662020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Meng L, Liu S, Liu F and Sang M, Ju Y, Fan
X, Gu L, Li Z, Geng C and Sang M: ZEB1-mediated transcriptional
upregulation of circWWC3 promotes breast cancer progression through
activating ras signaling pathway. Mol Ther Nucleic Acids.
22:124–137. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gu L, Sang Y, Nan X, Zheng Y, Liu F, Meng
L, Sang M and Shan B: circCYP24A1 facilitates esophageal squamous
cell carcinoma progression through binding PKM2 to regulate
NF-κB-induced CCL5 secretion. Mol Cancer. 21:2172022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu CX and Chen LL: Circular RNAs:
Characterization, cellular roles, and applications. Cell.
185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yin X, Wang J, Shan C, Jia Q, Bian Y and
Zhang H: Circular RNA ZNF609 promotes laryngeal squamous cell
carcinoma progression by upregulating epidermal growth factor
receptor via sponging microRNA-134-5p. Bioengineered. 13:6929–6941.
2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fan D and Zhu Y: Circ_0120175 promotes
laryngeal squamous cell carcinoma development through up-regulating
SLC7A11 by sponging miR-330-3p. J Mol Histol. 53:159–171. 2022.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai
L, Niu M, Guo H, Li W, Xue X, et al: Circular RNA circCORO1C
promotes laryngeal squamous cell carcinoma progression by
modulating the let-7c-5p/PBX3 axis. Mol Cancer. 19:992020.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zang Y, Li J, Wan B and Tai Y: circRNA
circ-CCND1 promotes the proliferation of laryngeal squamous cell
carcinoma through elevating CCND1 expression via interacting with
HuR and miR-646. J Cell Mol Med. 24:2423–2433. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao
Z, Han T, Gu J, Li N, Wu H, et al: Circular RNA MTCL1 promotes
advanced laryngeal squamous cell carcinoma progression by
inhibiting C1QBP ubiquitin degradation and mediating beta-catenin
activation. Mol Cancer. 21:922022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Han J, Lin Q and Dong C: Plasma cell-free
circRNAs panel act as fingerprint predicts the occurrence of
laryngeal squamous cell carcinoma. Aging (Albany NY).
13:17328–17336. 2021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chomczynski P and Sacchi N: The
single-step method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction: Twenty-something years
on. Nat Protoc. 1:581–585. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Loganathan T and Doss C GP: Non-coding
RNAs in human health and disease: Potential function as biomarkers
and therapeutic targets. Funct Integr Genomics. 23:332023.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Bai C, Hao X, Zhou L, Sun Y, Song L, Wang
F, Yang L, Liu J and Chen J: Machine learning-based identification
of the novel circRNAs circERBB2 and circCHST12 as potential
biomarkers of intracerebral hemorrhage. Front Neurosci.
16:10025902022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu
S and Li C: Circular RNA expression profile identifies circMGEA5 as
a novel metastasis-promoting factor and potential biomarker in
osteosarcoma. J Biochem Mol Toxicol. 37:e232862022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lu L, Liu Y, Zhang G, Xu Y, Hu D, Ji G and
Xu H: The circRNA expression profile of colorectal inflammatory
cancer transformation revealed potential predictive biomarkers.
Aging (Albany NY). 14:9280–9299. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang D, Li R, Jiang J, Qian H and Xu W:
Exosomal circRNAs: Novel biomarkers and therapeutic targets for
gastrointestinal tumors. Biomed Pharmacother. 157:1140532023.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li Q, Xu M, Zhang Z, Yin M, Zhang Y and
Liu F: Urinary exosomal hsa_circ_0001250 as a novel diagnostic
biomarker of idiopathic membranous nephropathy. J Transl Med.
20:6072022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gong H, Wu W, Fang C and He D: CircBFAR
correlates with poor prognosis and promotes laryngeal squamous cell
cancer progression through miR-31-5p/COL5A1 axis. Laryngoscope
Investig Otolaryngol. 7:1951–1962. 2022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chu YL: Circ_0067934 correlates with poor
prognosisand promotes laryngeal squamous cell cancer progression by
sponging miR-1324. Eur Rev Med Pharmacol Sci. 24:4320–4327.
2020.PubMed/NCBI
|
29
|
Zhao J, Li XD, Wang M, Song LN and Zhao
MJ: Circular RNA ABCB10 contributes to laryngeal squamous cell
carcinoma (LSCC) progression by modulating the miR-588/CXCR4 axis.
Aging (Albany NY). 13:14078–14087. 2021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang X, Wu T, Wang P, Yang L, Li Q, Wang
J, Zhao R, Zhang J, Liu M, Cao J, et al: Circular RNA 103862
promotes proliferation and invasion of laryngeal squamous cell
carcinoma cells through the miR-493-5p/GOLM1 axis. Front Oncol.
10:10642020. View Article : Google Scholar : PubMed/NCBI
|