1
|
Mizrahi JD, Surana R, Valle JW and Shroff
RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Noë M, Hong SM, Wood LD, Thompson ED,
Roberts NJ, Goggins MG, Klein AP, Eshleman JR, Kern SE and Hruban
RH: Pancreatic cancer pathology viewed in the light of evolution.
Cancer Metastasis Rev. 40:661–674. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cicenas J, Kvederaviciute K, Meskinyte I,
Meskinyte-Kausiliene E, Skeberdyte A and Cicenas J: KRAS, TP53,
CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer.
Cancers (Basel). 9:422017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang M, Wu M, Liu X, Shao S, Huang J, Liu
B and Liang T: Pyroptosis remodeling tumor microenvironment to
enhance pancreatic cancer immunotherapy driven by membrane
anchoring photosensitizer. Adv Sci (Weinh). 9:e22029142022.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Looi CK, Chung FF, Leong CO, Wong SF,
Rosli R and Mai CW: Therapeutic challenges and current
immunomodulatory strategies in targeting the immunosuppressive
pancreatic tumor microenvironment. J Exp Clin Cancer Res.
38:1622022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Balachandran VP, Beatty GL and Dougan SK:
Broadening the impact of immunotherapy to pancreatic cancer:
Challenges and opportunities. Gastroenterology. 156:2056–2072.
2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li HB, Yang ZH and Guo QQ: Immune
checkpoint inhibition for pancreatic ductal adenocarcinoma:
Limitations and prospects: A systematic review. Cell Commun Signal.
19:1172021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lou X, Gao D, Yang L, Wang Y and Hou Y:
Endoplasmic reticulum stress mediates the myeloid-derived immune
suppression associated with cancer and infectious disease. J Transl
Med. 21:12023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Smyth R and Sun J: Protein Kinase R in
Bacterial Infections: Friend or Foe? Front Immunol. 12:7021422021.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Meurs EF, Galabru J, Barber GN, Katze MG
and Hovanessian AG: Tumor suppressor function of the
interferon-induced double-stranded RNA-activated protein kinase.
Proc Natl Acad Sci USA. 90:232–236. 1993. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu B, Song M, Dong Q, Xiang G, Li J, Ma X
and Wei F: UBR5 promotes tumor immune evasion through enhancing
IFN-γ-induced PDL1 transcription in triple negative breast
cancer. Theranostics. 12:5086–5102. 2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shir A and Levitzki A: Inhibition of
glioma growth by tumor-specific activation of double-stranded
RNA-dependent protein kinase PKR. Nat Biotechnol. 20:895–900. 2002.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang X and Chan C: Repression of PKR
mediates palmitate-induced apoptosis in HepG2 cells through
regulation of Bcl-2. Cell Res. 19:469–486. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Minnee E and Faller WJ: Translation
initiation and its relevance in colorectal cancer. FEBS J.
288:6635–6651. 2021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Watanabe T, Ninomiya H, Saitou T,
Takanezawa S, Yamamoto S, Imai Y, Yoshida O, Kawakami R, Hirooka M,
Abe M, et al: Therapeutic effects of the PKR inhibitor C16
suppressing tumor proliferation and angiogenesis in hepatocellular
carcinoma in vitro and in vivo. Sci Rep. 10:51332020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim SH, Forman AP, Mathews MB and Gunnery
S: Human breast cancer cells contain elevated levels and activity
of the protein kinase, PKR. Oncogene. 19:3086–3094. 2000.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nakamura K, Aizawa K, Aung KH, Yamauchi J
and Tanoue A: Zebularine upregulates expression of CYP genes
through inhibition of DNMT1 and PKR in HepG2 cells. Sci Rep.
7:410932017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Luo X, Lin J, Fu S, Feng P, Su H,
He X, Liang X, Liu K and Deng W: Gelsolin promotes cancer
progression by regulating epithelial-mesenchymal transition in
hepatocellular carcinoma and correlates with a poor prognosis. J
Oncol. 2020:19803682020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Watanabe T, Imamura T and Hiasa Y: Roles
of protein kinase R in cancer: Potential as a therapeutic target.
Cancer Sci. 109:919–925. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Song H, Tian D, Sun J, Mao X, Kong W, Xu
D, Ji Y, Qiu B, Zhan M and Wang J: circFAM120B functions as a tumor
suppressor in esophageal squamous cell carcinoma via the
miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death
Dis. 13:3612022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vivian J, Rao AA, Nothaft FA, Ketchum C,
Armstrong J, Novak A, Pfeil J, Narkizian J, Deran AD,
Musselman-Brown A, et al: Toil enables reproducible, open source,
big biomedical data analyses. Nat Biotechnol. 35:314–316. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Goldman MJ, Craft B, Hastie M, Repečka K,
McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al:
Visualizing and interpreting cancer genomics data via the Xena
platform. Nat Biotechnol. 38:675–678. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li K, Luo H, Luo H and Zhu X: Clinical and
prognostic pan-cancer analysis of m6A RNA methylation regulators in
four types of endocrine system tumors. Aging (Albany NY).
12:23931–23944. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Barrett T, Troup DB, Wilhite SE, Ledoux P,
Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M,
Marshall KA, et al: NCBI GEO: Archive for high-throughput
functional genomic data. Nucleic Acids Res. 37:D885–D890. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Badea L, Herlea V, Dima SO, Dumitrascu T
and Popescu I: Combined gene expression analysis of whole-tissue
and microdissected pancreatic ductal adenocarcinoma identifies
genes specifically overexpressed in tumor epithelia.
Hepatogastroenterology. 55:2016–2027. 2008.PubMed/NCBI
|
28
|
Pei H, Li L, Fridley BL, Jenkins GD,
Kalari KR, Lingle W, Petersen G, Lou Z and Wang L: FKBP51 affects
cancer cell response to chemotherapy by negatively regulating Akt.
Cancer Cell. 16:259–266. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Donahue TR, Tran LM, Hill R, Li Y,
Kovochich A, Calvopina JH, Patel SG, Wu N, Hindoyan A, Farrell JJ,
et al: Integrative survival-based molecular profiling of human
pancreatic cancer. Clin Cancer Res. 18:1352–1363. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Janky R, Binda MM, Allemeersch J, Van den
Broeck A, Govaere O, Swinnen JV, Roskams T, Aerts S and Topal B:
Prognostic relevance of molecular subtypes and master regulators in
pancreatic ductal adenocarcinoma. BMC Cancer. 16:6322016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Nallagatla SR, Hwang J, Toroney R, Zheng
X, Cameron CE and Bevilacqua PC: 5′-triphosphate-dependent
activation of PKR by RNAs with short stem-loops. Science.
318:1455–1458. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hu W, Zhou C, Jing Q, Li Y, Yang J, Yang
C, Wang L, Hu J, Li H, Wang H, et al: FTH promotes the
proliferation and renders the HCC cells specifically resist to
ferroptosis by maintaining iron homeostasis. Cancer Cell Int.
21:7092021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Holcik M: Could the eIF2α-independent
translation Be the achilles heel of cancer? Front Oncol. 5:2642015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Karnam K, Sedmaki K, Sharma P, Venuganti
VVK and Kulkarni OP: Selective inhibition of PKR by C16 accelerates
diabetic wound healing by inhibiting NALP3 expression in mice.
Inflamm Res. 72:221–236. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee YS, Kunkeaw N and Lee YS: Protein
kinase R and its cellular regulators in cancer: An active player or
a surveillant? Wiley Interdiscip Rev RNA. 11:e15582020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Haines GK III, Panos RJ, Bak PM, Brown T,
Zielinski M, Leyland J and Radosevich JA: Interferon-responsive
protein kinase (p68) and proliferating cell nuclear antigen are
inversely distributed in head and neck squamous cell carcinoma.
Tumour Biol. 19:52–59. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Haines GK, Cajulis R, Hayden R, Duda R,
Talamonti M and Radosevich JA: Expression of the double-stranded
RNA-dependent protein kinase (p68) in human breast tissues. Tumour
Biol. 17:5–12. 1996. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shimada A, Shiota G, Miyata H, Kamahora T,
Kawasaki H, Shiraki K, Hino S and Terada T: Aberrant expression of
double-stranded RNA-dependent protein kinase in hepatocytes of
chronic hepatitis and differentiated hepatocellular carcinoma.
Cancer Res. 58:4434–4438. 1998.PubMed/NCBI
|
41
|
Singh C, Haines GK, Talamonti MS and
Radosevich JA: Expression of p68 in human colon cancer. Tumour
Biol. 16:281–289. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Terada T, Ueyama J, Ukita Y and Ohta T:
Protein expression of double-stranded RNA-activated protein kinase
(PKR) in intrahepatic bile ducts in normal adult livers, fetal
livers, primary biliary cirrhosis, hepatolithiasis and intrahepatic
cholangiocarcinoma. Liver. 20:450–457. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
He Y, Correa AM, Raso MG, Hofstetter WL,
Fang B, Behrens C, Roth JA, Zhou Y, Yu L, Wistuba II, et al: The
role of PKR/eIF2α signaling pathway in prognosis of non-small cell
lung cancer. PLoS One. 6:e248552011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim SH, Gunnery S, Choe JK and Mathews MB:
Neoplastic progression in melanoma and colon cancer is associated
with increased expression and activity of the interferon-inducible
protein kinase, PKR. Oncogene. 21:8741–8748. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Terada T, Maeta H, Endo K and Ohta T:
Protein expression of double-stranded RNA-activated protein kinase
in thyroid carcinomas: Correlations with histologic types,
pathologic parameters, and Ki-67 labeling. Hum Pathol. 31:817–821.
2000. View Article : Google Scholar : PubMed/NCBI
|
46
|
Blalock WL, Grimaldi C, Fala F, Follo M,
Horn S, Basecke J, Martinelli G, Cocco L and Martelli AM: PKR
activity is required for acute leukemic cell maintenance and
growth: A role for PKR-mediated phosphatase activity to regulate
GSK-3 phosphorylation. J Cell Physiol. 221:232–241. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Roh MS, Kwak JY, Kim SJ, Lee HW, Kwon HC,
Hwang TH, Choi PJ and Hong YS: Expression of double-stranded
RNA-activated protein kinase in small-size peripheral
adenocarcinoma of the lung. Pathol Int. 55:688–693. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Riley RS, June CH, Langer R and Mitchell
MJ: Delivery technologies for cancer immunotherapy. Nat Rev Drug
Discov. 18:175–196. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Immunotherapy shows promise in pancreatic
cancer. Cancer Discov. 9:13302019. View Article : Google Scholar : PubMed/NCBI
|
50
|
O'Hara MH, O'Reilly EM, Varadhachary G,
Wolff RA, Wainberg ZA, Ko AH, Fisher G, Rahma O, Lyman JP, Cabanski
CR, et al: CD40 agonistic monoclonal antibody APX005M (sotigalimab)
and chemotherapy, with or without nivolumab, for the treatment of
metastatic pancreatic adenocarcinoma: An open-label, multicentre,
phase 1b study. Lancet Oncol. 22:118–131. 2021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Rech AJ, Mick R, Martin S, Recio A, Aqui
NA, Powell DJ Jr, Colligon TA, Trosko JA, Leinbach LI, Pletcher CH,
et al: CD25 blockade depletes and selectively reprograms regulatory
T cells in concert with immunotherapy in cancer patients. Sci
Transl Med. 4:134ra622012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Reap EA, Suryadevara CM, Batich KA,
Sanchez-Perez L, Archer GE, Schmittling RJ, Norberg PK, Herndon JE
II, Healy P, Congdon KL, et al: Dendritic cells enhance
polyfunctionality of adoptively transferred T cells that target
cytomegalovirus in glioblastoma. Cancer Res. 78:256–264. 2018.
View Article : Google Scholar : PubMed/NCBI
|
53
|
He X and Xu C: Immune checkpoint signaling
and cancer immunotherapy. Cell Res. 30:660–669. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Bagchi S, Yuan R and Engleman EG: Immune
Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact
and Mechanisms of Response and Resistance. Annu Rev Pathol.
16:223–249. 2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Herzberg B, Campo MJ and Gainor JF: Immune
checkpoint inhibitors in non-small cell lung cancer. Oncologist.
22:81–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Brower V: Checkpoint blockade
immunotherapy for cancer comes of age. J Natl Cancer Inst.
107:djv0692015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Farasati Far B, Safaei M, Mokhtari F,
Fallahi MS and Naimi-Jamal MR: Fundamental concepts of protein
therapeutics and spacing in oncology: An updated comprehensive
review. Med Oncol. 40:1662023. View Article : Google Scholar : PubMed/NCBI
|
58
|
Royal RE, Levy C, Turner K, Mathur A,
Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I and
Rosenberg SA: Phase 2 trial of single agent Ipilimumab
(anti-CTLA-4) for locally advanced or metastatic pancreatic
adenocarcinoma. J Immunother. 33:828–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Brink GJ, Groeneweg JW, Hooft L, Zweemer
RP and Witteveen PO: Response to systemic therapies in ovarian
adult granulosa cell tumors: A literature review. Cancers (Basel).
14:29982022. View Article : Google Scholar : PubMed/NCBI
|
61
|
Gulhati P, Schalck A, Jiang S, Shang X, Wu
CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, et al: Targeting T
cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results
in antitumor immunity and durable response in pancreatic cancer.
Nat Cancer. 4:62–80. 2023.PubMed/NCBI
|
62
|
Freed-Pastor WA, Lambert LJ, Ely ZA,
Pattada NB, Bhutkar A, Eng G, Mercer KL, Garcia AP, Lin L, Rideout
WM III, et al: The CD155/TIGIT axis promotes and maintains immune
evasion in neoantigen-expressing pancreatic cancer. Cancer Cell.
39:1342–1360.e14. 2021. View Article : Google Scholar : PubMed/NCBI
|
63
|
Qian Y, Gong Y, Fan Z, Luo G, Huang Q,
Deng S, Cheng H, Jin K, Ni Q, Yu X and Liu C: Molecular alterations
and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol
Oncol. 13:1302020. View Article : Google Scholar : PubMed/NCBI
|
64
|
Conroy T, Castan F, Lopez A, Turpin A, Ben
Abdelghani M, Wei AC, Mitry E, Biagi JJ, Evesque L, Artru P, et al:
Five-Year outcomes of FOLFIRINOX vs gemcitabine as adjuvant therapy
for pancreatic cancer: A randomized clinical trial. JAMA Oncol.
8:1571–1578. 2022. View Article : Google Scholar : PubMed/NCBI
|
65
|
Mahalingam D, Wilkinson GA, Eng KH, Fields
P, Raber P, Moseley JL, Cheetham K, Coffey M, Nuovo G, Kalinski P,
et al: Pembrolizumab in combination with the oncolytic virus
pelareorep and chemotherapy in patients with advanced pancreatic
adenocarcinoma: A phase Ib study. Clin Cancer Res. 26:71–81. 2020.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Conroy T, Hammel P, Hebbar M, Ben
Abdelghani M, Wei AC, Raoul JL, Choné L, Francois E, Artru P, Biagi
JJ, et al: FOLFIRINOX or gemcitabine as adjuvant therapy for
pancreatic cancer. N Engl J Med. 379:2395–2406. 2018. View Article : Google Scholar : PubMed/NCBI
|
67
|
Schizas D, Charalampakis N, Kole C,
Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A and
Karamouzis MV: Immunotherapy for pancreatic cancer: A 2020 update.
Cancer Treat Rev. 86:1020162020. View Article : Google Scholar : PubMed/NCBI
|
68
|
Hessmann E, Buchholz SM, Demir IE, Singh
SK, Gress TM, Ellenrieder V and Neesse A: Microenvironmental
determinants of pancreatic cancer. Physiol Rev. 100:1707–1751.
2020. View Article : Google Scholar : PubMed/NCBI
|
69
|
Neesse A, Bauer CA, Öhlund D, Lauth M,
Buchholz M, Michl P, Tuveson DA and Gress TM: Stromal biology and
therapy in pancreatic cancer: ready for clinical translation? Gut.
68:159–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
70
|
Binnewies M, Roberts EW, Kersten K, Chan
V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI,
Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nat Med.
24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
71
|
Murphy TL and Murphy KM: Dendritic cells
in cancer immunology. Cell Mol Immunol. 19:3–13. 2022. View Article : Google Scholar : PubMed/NCBI
|
72
|
Yin X, Chen S and Eisenbarth SC: Dendritic
cell regulation of T helper cells. Annu Rev Immunol. 39:759–790.
2021. View Article : Google Scholar : PubMed/NCBI
|
73
|
Sanders VM: Epigenetic regulation of Th1
and Th2 cell development. Brain Behav Immun. 20:317–3124. 2006.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Dong C: Cytokine regulation and function
in T cells. Annu Rev Immunol. 39:51–76. 2021. View Article : Google Scholar : PubMed/NCBI
|
75
|
Garcia-Ortega MB, Lopez GJ, Jimenez G,
Garcia-Garcia JA, Conde V, Boulaiz H, Carrillo E, Perán M, Marchal
JA and Garcia MA: Clinical and therapeutic potential of protein
kinase PKR in cancer and metabolism. Expert Rev Mol Med. 19:e92017.
View Article : Google Scholar : PubMed/NCBI
|
76
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signaling
pathway and cancer. Cancer Treat Rev Apr. 30:193–204. 2004.
View Article : Google Scholar : PubMed/NCBI
|