1
|
Scheffel RS, Dora JM and Maia AL: BRAF
mutations in thyroid cancer. Curr Opin Oncol. 34:9–18. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
European Network of Cancer Registries, .
Thyroid cancer (TC) Factsheet, January 2017. https://www.encr.eu/sites/default/files/factsheets/ENCR_Factsheet_Thyroid_2017-2.pdfDecember
4–2022
|
3
|
Haddad RI, Bischoff L, Ball D, Bernet V,
Blomain E, Busaidy NL, Campbell M, Dickson P, Duh QY, Ehya H, et
al: Thyroid carcinoma, version 2.2022, NCCN clinical practice
guidelines in oncology. J Natl Compr Canc Netw. 20:925–951. 2022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bai Y, Kakudo K and Jung CK: Updates in
the pathologic classification of thyroid neoplasms: A review of the
World Health Organization Classification. Endocrinol Metab (Seoul).
35:696–715. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jung CK, Bychkov A and Kakudo K: Update
from the 2022 World Health Organization Classification of Thyroid
Tumors: A standardized diagnostic approach. Endocrinol Metab
(Seoul). 37:703–718. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cantwell-Dorris ER, O'Leary JJ and Sheils
OM: BRAFV600E: Implications for carcinogenesis and molecular
therapy. Mol Cancer Ther. 10:385–394. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang P, Guan H, Yuan S, Cheng H, Zheng J,
Zhang Z, Liu Y, Yu Y, Meng Z, Zheng X and Zhao L: Author
Correction: Targeting myeloid derived suppressor cells reverts
immune suppression and sensitizes BRAF-mutant papillary thyroid
cancer to MAPK inhibitors. Nat Commun. 13:70252022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Longheu A, Canu GL, Cappellacci F, Erdas
E, Medas F and Calò PG: Tall cell variant versus conventional
papillary thyroid carcinoma: A retrospective analysis in 351
consecutive patients. J Clin Med. 10:702020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Śmiech M, Leszczyński P, Kono H, Wardell C
and Taniguchi H: Emerging BRAF mutations in cancer progression and
their possible effects on transcriptional networks. Genes (Basel).
11:13422020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Prete A, Matrone A, Gambale C, Torregrossa
L, Minaldi E, Romei C, Ciampi R, Molinaro E and Elisei R: Poorly
differentiated and anaplastic thyroid cancer: Insights into
genomics, microenvironment and new drugs. Cancers (Basel).
13:32002021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou Y, Zhao Y, Ding X, Liang J, Xu H, Lin
Y, Khan HH and Shi B: A new way out of the predicament of
anaplastic thyroid carcinoma from existing data analysis. Front
Endocrinol (Lausanne). 13:8879062022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Iñiguez-Ariza NM, Bible KC and Clarke BL:
Bone metastases in thyroid cancer. J Bone Oncol. 21:1002822020.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Erden ES, Babayigit C, Davran R, Akin M,
Karazincir S, Isaogullari N, Demirkose M and Genc S: Papillary
thyroid carcinoma with lung metastasis arising from
dyshormonogenetic goiter: A case report. Case Rep Med.
2013:8131672013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Basnet A, Pandita A, Fullmer J and
Sivapiragasam A: Squamous cell carcinoma of the thyroid as a result
of anaplastic transformation from BRAF-positive papillary thyroid
cancer. Case Rep Oncol Med. 2017:42764352017.PubMed/NCBI
|
15
|
Toraih EA, Hussein MH, Zerfaoui M, Attia
AS, Marzouk Ellythy A, Mostafa A, Ruiz EML, Shama MA, Russell JO,
Randolph GW and Kandil E: Site-Specific metastasis and survival in
papillary thyroid cancer: The importance of brain and multi-organ
disease. Cancers (Basel). 13:16252021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Varadarajan VV, Pace EK, Patel V, Sawhney
R, Amdur RJ and Dziegielewski PT: Follicular thyroid carcinoma
metastasis to the facial skeleton: A systematic review. BMC Cancer.
17:2252017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Parameswaran R, Shulin Hu J, Min En N, Tan
WB and Yuan NK: Patterns of metastasis in follicular thyroid
carcinoma and the difference between early and delayed
presentation. Ann R Coll Surg Engl. 99:151–154. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu MH, Lee YY, Lu YL and Lin SF: Risk
factors and prognosis for metastatic follicular thyroid cancer.
Front Endocrinol (Lausanne). 13:7918262022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim N, Stiegler AL, Cameron TO, Hallock
PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML and Burden SJ: Lrp4
is a receptor for Agrin and forms a complex with MuSK. Cell.
135:334–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ruegg MA and Bixby JL: Agrin orchestrates
synaptic differentiation at the vertebrate neuromuscular junction.
Trends Neurosci. 21:22–27. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC
and Mei L: LRP4 serves as a coreceptor of agrin. Neuron.
60:285–297. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bassat E, Mutlak YE, Genzelinakh A,
Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J,
Riabov Bassat D, et al: The extracellular matrix protein agrin
promotes heart regeneration in mice. Nature. 547:179–184. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lazaridis K and Tzartos SJ: Myasthenia
Gravis: Autoantibody specificities and their role in MG management.
Front Neurol. 11:5969812020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jury EC, Eldridge J, Isenberg DA and
Kabouridis PS: Agrin signalling contributes to cell activation and
is overexpressed in T lymphocytes from lupus patients. J Immunol.
179:7975–7983. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sethi MK, Downs M, Shao C, Hackett WE,
Phillips JJ and Zaia J: In-Depth matrisome and glycoproteomic
analysis of human brain glioblastoma versus control tissue. Mol
Cell Proteomics. 21:1002162022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Han L, Shi H, Ma S, Luo Y, Sun W, Li S,
Zhang N, Jiang X, Gao Y, Huang Z, et al: Agrin promotes non-small
cell lung cancer progression and stimulates regulatory T cells via
increasing IL-6 secretion through PI3K/AKT pathway. Front Oncol.
11:8044182022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kawahara R, Granato DC, Carnielli CM,
Cervigne NK, Oliveria CE, Rivera C, Yokoo S, Fonseca FP, Lopes M,
Santos-Silva AR, et al: Agrin and perlecan mediate tumorigenic
processes in oral squamous cell carcinoma. PLoS One. 9:e1150042014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tian C, Öhlund D, Rickelt S, Lidström T,
Huang Y, Hao L, Zhao RT, Franklin O, Bhatia SN, Tuveson DA and
Hynes RO: Cancer cell-derived matrisome proteins promote metastasis
in pancreatic ductal adenocarcinoma. Cancer Res. 80:1461–1474.
2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Grzanka M, Stachurska-Skrodzka A,
Adamiok-Ostrowska A, Gajda E and Czarnocka B: Extracellular
vesicles as signal carriers in malignant thyroid tumors? Int J Mol
Sci. 23:32622022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li X, Wang X, Song W, Xu H, Huang R, Wang
Y, Zhao W, Xiao Z and Yang X: Oncogenic properties of NEAT1 in
prostate cancer cells depend on the CDC5L-AGRN transcriptional
regulation circuit. Cancer Res. 78:4138–4149. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chandrashekar DS, Karthikeyan SK, Korla
PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne
U, et al: UALCAN: An update to the integrated cancer data analysis
platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen F, Chandrashekar DS, Varambally S and
Creighton CJ: Pan-cancer molecular subtypes revealed by
mass-spectrometry-based proteomic characterization of more than 500
human cancers. Nat Commun. 10:56792019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q,
Li B and Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune
cells. Nucleic Acids Res. 48((W1)): W509–W514. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li B, Severson E, Pignon JC, Zhao H, Li T,
Novak J, Jiang P, Shen H, Aster JC, Rodig S, et al: Comprehensive
analyses of tumor immunity: Implications for cancer immunotherapy.
Genome Biol. 17:1742016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chakraborty S, Lakshmanan M, Swa HL, Chen
J, Zhang X, Ong YS, Loo LS, Akıncılar SC, Gunaratne J, Tergaonkar
V, et al: An oncogenic role of Agrin in regulating focal adhesion
integrity in hepatocellular carcinoma. Nat Commun. 6:61842015.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Chakraborty S, Njah K, Pobbati AV, Lim YB,
Raju A, Lakshmanan M, Tergaonkar V, Lim CT and Hong W: Agrin as a
Mechanotransduction Signal Regulating YAP through the Hippo
Pathway. Cell Rep. 18:2464–2479. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Njah K, Chakraborty S, Qiu B, Arumugam S,
Raju A, Pobbati AV, Lakshmanan M, Tergaonkar V, Thibault G, Wang X
and Hong W: A role of agrin in maintaining the stability of
vascular endothelial growth factor receptor-2 during tumor
angiogenesis. Cell Rep. 28:949–965.e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang ZQ, Sun XL, Wang YL and Miao YL:
Agrin promotes the proliferation, invasion and migration of rectal
cancer cells via the WNT signaling pathway to contribute to rectal
cancer progression. J Recept Signal Transduct Res. 41:363–370.
2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
He M, Cheng C, Tu J, Ji SS, Lou D and Bai
B: Agrin expression is correlated with tumor development and poor
prognosis in cholangiocarcinoma. J Int Med Res.
49:30006052110097222021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rivera C, Zandonadi FS, Sánchez-Romero C,
Soares CD, Granato DC, González-Arriagada WA and Paes Leme AF:
Agrin has a pathological role in the progression of oral cancer. Br
J Cancer. 118:1628–1638. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Groffen AJ, Buskens CA, van Kuppevelt TH,
Veerkamp JH, Monnens LA and van den Heuvel LP: Primary structure
and high expression of human agrin in basement membranes of adult
lung and kidney. Eur J Biochem. 254:123–128. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Collins BJ, Gorelick G and Schneider AB:
Dystroglycan is present in rat thyroid and rat thyroid cells and
responds to thyrotropin. Endocrinology. 142:3152–3162. 2001.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Kurmann AA, Serra M, Hawkins F, Rankin SA,
Mori M, Astapova I, Ullas S, Lin S, Bilodeau M, Rossant J, et al:
Regeneration of thyroid function by transplantation of
differentiated pluripotent stem cells. Cell Stem Cell. 17:527–542.
2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bassett JH, Swinhoe R, Chassande O,
Samarut J and Williams GR: Thyroid hormone regulates heparan
sulfate proteoglycan expression in the growth plate. Endocrinology.
147:295–305. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bassett JH and Williams GR: Role of
thyroid hormones in skeletal development and bone maintenance.
Endocr Rev. 37:135–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mazzon C, Anselmo A, Soldani C, Cibella J,
Ploia C, Moalli F, Burden SJ, Dustin ML, Sarukhan A and Viola A:
Agrin is required for survival and function of monocytic cells.
Blood. 119:5502–5511. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gong J, Jin B, Shang L and Liu N:
Characterization of the immune cell infiltration landscape of
thyroid cancer for improved immunotherapy. Front Mol Biosci.
8:7140532021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kim S, Cho SW, Min HS, Kim KM, Yeom GJ,
Kim EY, Lee KE, Yun YG, Park DJ and Park YJ: The expression of
tumor-associated macrophages in papillary thyroid carcinoma.
Endocrinol Metab (Seoul). 28:192–198. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ryder M, Ghossein RA, Ricarte-Filho JC,
Knauf JA and Fagin JA: Increased density of tumor-associated
macrophages is associated with decreased survival in advanced
thyroid cancer. Endocr Relat Cancer. 15:1069–1074. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gogali F, Paterakis G, Rassidakis GZ,
Kaltsas G, Liakou CI, Gousis P, Neonakis E, Manoussakis MN and
Liapi C: Phenotypical analysis of lymphocytes with suppressive and
regulatory properties (Tregs) and NK cells in the papillary
carcinoma of thyroid. J Clin Endocrinol Metab. 97:1474–1482. 2012.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Galdiero MR, Bianchi P, Grizzi F, Di Caro
G, Basso G, Ponzetta A, Bonavita E, Barbagallo M, Tartari S,
Polentarutti N, et al: Occurrence and significance of
tumor-associated neutrophils in patients with colorectal cancer.
Int J Cancer. 139:446–456. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wikberg ML, Ling A, Li X, Öberg A, Edin S
and Palmqvist R: Neutrophil infiltration is a favorable prognostic
factor in early stages of colon cancer. Hum Pathol. 68:193–202.
2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhou L, Xu L, Chen L, Fu Q, Liu Z, Chang
Y, Lin Z and Xu J: Tumor-infiltrating neutrophils predict benefit
from adjuvant chemotherapy in patients with muscle invasive bladder
cancer. Oncoimmunology. 6:e12932112017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Masucci MT, Minopoli M and Carriero MV:
Tumor associated neutrophils. Their role in tumorigenesis,
metastasis, prognosis and therapy. Front Oncol. 9:11462019.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Wu L and Zhang XH: Tumor-Associated
neutrophils and macrophages-heterogenous but not chaotic. Front
Immunol. 11:5539672020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Jablonska J, Leschner S, Westphal K,
Lienenklaus S and Weiss S: Neutrophils responsive to endogenous
IFN-beta regulate tumor angiogenesis and growth in a mouse tumor
model. J Clin Invest. 120:1151–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Queen MM, Ryan RE, Holzer RG, Keller-Peck
CR and Jorcyk CL: Breast cancer cells stimulate neutrophils to
produce oncostatin M: Potential implications for tumor progression.
Cancer Res. 65:8896–8904. 2005. View Article : Google Scholar : PubMed/NCBI
|
61
|
Scapini P and Cassatella MA: Social
networking of human neutrophils within the immune system. Blood.
124:710–719. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Galdiero MR, Varricchi G, Loffredo S,
Bellevicine C, Lansione T, Ferrara AL, Iannone R, di Somma S,
Borriello F, Clery E, et al: Potential involvement of neutrophils
in human thyroid cancer. PLoS One. 13:e01997402018. View Article : Google Scholar : PubMed/NCBI
|
63
|
Li D, Gu Q, Xie Z, Shen Q and Li H:
Clinical significance of nuclear localisation of agrin in lung
adenocarcinoma. Pol J Pathol. 70:198–204. 2019. View Article : Google Scholar : PubMed/NCBI
|