1
|
Chang A and Harawi SJ: Oncocytes,
oncocytosis, and oncocytic tumors. Pathol Annu. 27(Pt 1): 263–304.
1992.PubMed/NCBI
|
2
|
Tan PH, Ellis I, Allison K, Brogi E, Fox
SB, Lakhani S, Lazar AJ, Morris EA, Sahin A, Salgado R, et al: The
2019 WHO classification of tumours of the breast. Histopathology.
77:181–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zaratiegui M, Irvine DV and Martienssen
RA: Noncoding RNAs and gene silencing. Cell. 128:763–776. 2007.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Pasquinelli AE: MicroRNAs and their
targets: Recognition, regulation and an emerging reciprocal
relationship. Nat Rev Genet. 13:271–282. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen CZ: MicroRNAs as oncogenes and tumor
suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Weiland M, Gao XH, Zhou L and Mi QS: Small
RNAs have a large impact: Circulating microRNAs as biomarkers for
human diseases. RNA Biol. 9:850–859. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Giuliani A, Prattichizzo F, Micolucci L,
Ceriello A, Procopio AD and Rippo MR: Mitochondrial (Dys) function
in inflammaging: Do mitomiRs influence the energetic, oxidative,
and inflammatory status of senescent cells? Mediators Inflamm.
2017:23090342017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jaquenod De Giusti C, Roman B and Das S:
The influence of microRNAs on mitochondrial calcium. Front Physiol.
9:12912018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu D, Takeshita F, Hino Y, Fukunaga S,
Kudo Y, Tamaki A, Matsunaga J, Takahashi RU, Takata T, Shimamoto A,
et al: miR-22 represses cancer progression by inducing cellular
senescence. J Cell Biol. 193:409–424. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu D, Li L, Zhang XX, Wan DY, Xi BX, Hu
Z, Ding WC, Zhu D, Wang XL, Wang W, et al: IX1 promotes tumor
lymphangiogenesis by coordinating TGFβ signals that increase
expression of VEGF-C. Cancer Res. 74:5597–5607. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Goulding H, Pinder S, Cannon P, Pearson D,
Nicholson R, Snead D, Bell J, Elston CW, Robertson JF, Blamey RW,
et al: A new immunohistochemical antibody for the assessment of
estrogen receptor status on routine formalin-fixed tissue samples.
Hum Pathol. 26:291–294. 1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Asa SL: My approach to oncocytic tumours
of the thyroid. J Clin Pathol. 57:225–232. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Durham JR and Fechner RE: The histologic
spectrum of apocrine lesions of the breast. Am J Clin Pathol.
113((suppl_1)): S3–S18. 2000.PubMed/NCBI
|
17
|
Ragazzi M, de Biase D, Betts CM, Farnedi
A, Ramadan SS, Tallini G, Reis-Filho JS and Eusebi V: Oncocytic
carcinoma of the breast: Frequency, morphology and follow-up. Hum
Pathol. 42:166–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gil-Zamorano J, Martin R, Daimiel L,
Richardson K, Giordano E, Nicod N, García-Carrasco B, Soares SM,
Iglesias-Gutiérrez E, Lasunción MA, et al: Docosahexaenoic acid
modulates the enterocyte Caco-2 cell expression of microRNAs
involved in lipid metabolism. J Nutr. 144:575–585. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Frørup C, Mirza AH, Yarani R, Nielsen LB,
Mathiesen ER, Damm P, Svare J, Engelbrekt C, Størling J, Johannesen
J, et al: Plasma exosome-enriched extracellular vesicles from
lactating mothers with type 1 diabetes contain aberrant levels of
miRNAs during the postpartum period. Front Immunol. 12:7445092021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Barutta F, Corbetta B, Bellini S, Guarrera
S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi
N, Soedamah-Muthu SS, et al: MicroRNA 146a is associated with
diabetic complications in type 1 diabetic patients from the
EURODIAB PCS. J Transl Med. 19:4752021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Alamro H, Bajic V, Macvanin MT, Isenovic
ER, Gojobori T, Essack M and Gao X: Type 2 diabetes mellitus and
its comorbidity, Alzheimer's disease: Identifying critical microRNA
using machine learning. Front Endocrinol (Lausanne).
13:10846562023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bandiera S, Matégot R, Girard M, Demongeot
J and Henrion-Caude A: MitomiRs delineating the intracellular
localization of microRNAs at mitochondria. Free Radic Biol Med.
64:12–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jagannathan R, Thapa D, Nichols CE,
Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE,
Martinez I and Hollander JM: Translational regulation of the
mitochondrial genome following redistribution of mitochondrial
microRNA in the diabetic heart. Circ Cardiovasc Genet. 8:785–802.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jacques C, Guillotin D, Fontaine JF, Franc
B, Mirebeau-Prunier D, Fleury A, Malthiery Y and Savagner F: DNA
microarray and miRNA analyses reinforce the classification of
follicular thyroid tumors. J Clin Endocrinol Metab. 98:E981–E989.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Titov SE, Poloz TL, Veryaskina YA and
Anishchenko VV: Cytological and molecular diagnosis of Hürthle cell
thyroid tumors: Analysis of three cases. Mol Clin Oncol.
15:1492021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Di Meo A, Saleeb R, Wala SJ, Khella HW,
Ding Q, Zhai H, Krishan K, Krizova A, Gabril M, Evans A, et al: A
miRNA-based classification of renal cell carcinoma subtypes by PCR
and in situ hybridization. Oncotarget. 9:2092–2104. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Si C, Yu Q and Yao Y: Effect of
miR-146a-5p on proliferation and metastasis of triple-negative
breast cancer via regulation of SOX5. Exp Ther Med. 15:4515–4521.
2018.PubMed/NCBI
|
28
|
Chen G, Umelo IA, Lv S, Teugels E, Fostier
K, Kronenberger P, Dewaele A, Sadones J, Geers C and De Grève J:
miR-146a inhibits cell growth, cell migration and induces apoptosis
in non-small cell lung cancer cells. PLoS One. 8:e603172013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang C, Zhang J, Zhang A, Wang Y, Han L,
You Y, Pu P and Kang C: PUMA is a novel target of miR-221/222 in
human epithelial cancers. Int J Oncol. 37:1621–1626.
2010.PubMed/NCBI
|
30
|
Rippo MR, Olivieri F, Monsurrò V,
Prattichizzo F, Albertini MC and Procopio AD: MitomiRs in human
inflamm-aging: A hypothesis involving miR-181a, miR-34a and
miR-146a. Exp Gerontol. 56:154–163. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hockenbery D, Nuñez G, Milliman C,
Schreiber RD and Korsmeyer SJ: Bcl-2 is an inner mitochondrial
membrane protein that blocks programmed cell death. Nature.
348:334–336. 1990. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Bender CE, Fitzgerald P, Tait SW, Llambi
F, McStay GP, Tupper DO, Pellettieri J, Sánchez Alvarado A,
Salvesen GS and Green DR: Mitochondrial pathway of apoptosis is
ancestral in metazoans. Proc Natl Acad Sci USA. 109:4904–4909.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Oltvai ZN, Milliman CL and Korsmeyer SJ:
Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that
accelerates programmed cell death. Cell. 74:609–619. 1993.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Giuliani A, Cirilli I, Prattichizzo F,
Mensà E, Fulgenzi G, Sabbatinelli J, Graciotti L, Olivieri F,
Procopio AD, Tiano L and Rippo MR: The mitomiR/Bcl-2 axis affects
mitochondrial function and autophagic vacuole formation in
senescent endothelial cells. Aging (Albany NY). 10:2855–2873. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Cimmino A, Calin GA, Fabbri M, Iorio MV,
Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et
al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl
Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Patel N, Garikapati KR, Ramaiah MJ,
Polavarapu KK, Bhadra U and Bhadra MP: miR-15a/miR-16 induces
mitochondrial dependent apoptosis in breast cancer cells by
suppressing oncogene BMI1. Life Sci. 164:60–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun
S, Hong L, Liu J and Fan D: miR-15b and miR-16 modulate multidrug
resistance by targeting BCL2 in human gastric cancer cells. Int J
Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nissen T and Wynn R: The clinical case
report: A review of its merits and limitations. BMC Res Notes.
7:2642014. View Article : Google Scholar : PubMed/NCBI
|