Influence of tumor mycobiome on cancer pathogenesis (Review)
- Authors:
- Weipeng Liu
- Zongrui Li
- Xiaopeng Li
- Haiyang Cao
- He Jiang
- Qingbin Niu
- Baoguang Hu
-
Affiliations: Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China, Breast Treatment Center, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China, Department of Gastrointestinal Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China - Published online on: November 2, 2023 https://doi.org/10.3892/ol.2023.14128
- Article Number: 541
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 371:595–602. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK and Trinchieri G: Microbes and cancer. Annu Rev Immunol. 35:199–228. 2017. View Article : Google Scholar : PubMed/NCBI | |
Finlay BB, Goldszmid R, Honda K, Trinchieri G, Wargo J and Zitvogel L: Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat Rev Immunol. 20:522–528. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garrett WS: The gut microbiota and colon cancer. Science. 364:1133–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shiao SL, Kershaw KM, Limon JJ, You S, Yoon J, Ko EY, Guarnerio J, Potdar AA, McGovern DPB, Bose S, et al: Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer cell. 39:1202–1213.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al: A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 565:600–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, et al: Fungal microbiota dysbiosis in IBD. Gut. 66:1039–1048. 2017. View Article : Google Scholar : PubMed/NCBI | |
Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M; NIH Intramural Sequencing Center Comparative Sequencing Program, ; et al: Topographic diversity of fungal and bacterial communities in human skin. Nature. 498:367–370. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, Neut C, Vermeire S, Clemente J, Colombel JF, et al: Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. mBio. 7:e01250–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leonardi I, Paramsothy S, Doron I, Semon A, Kaakoush NO, Clemente JC, Faith JJ, Borody TJ, Mitchell HM, Colombel JF, et al: Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 27:823–829.e3. 2020. View Article : Google Scholar : PubMed/NCBI | |
Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, Fiers WD, Lin WY, Bialt-DeCelie M, Román E, et al: Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol. 6:1493–1504. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman ES, Hoffmann C, et al: Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe. 18:489–500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, Di Simone MP, Calabrese C, Poggioli G, Langella P, et al: Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J Crohns Colitis. 10:296–305. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, Bonneau R and Ghedin E: Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome. 6:122018. View Article : Google Scholar : PubMed/NCBI | |
Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, Amoretti LA, Fontana E, Wright RJ, Miranda E, et al: High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 26:59–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, Zhang F, Tang W, Ching JYL, Wu JCY, et al: Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 9:36632018. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG and White TC: Hidden killers: Human fungal infections. Sci Transl Med. 4:165rv132012. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vogtmann E and Goedert JJ: Epidemiologic studies of the human microbiome and cancer. Br J Cancer. 114:237–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Polk DB and Peek RM Jr: Helicobacter pylori: Gastric cancer and beyond. Nat Rev Cancer. 10:403–414. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI | |
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, et al: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 579:567–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, Lipkin SM and Shen X: The cancer microbiome atlas: A pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 29:281–298.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al: The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 368:973–980. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al: The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Elaskandrany M, Patel R, Patel M, Miller G, Saxena D and Saxena A: Fungi, host immune response, and tumorigenesis. Am J Physiol Gastrointest Liver Physiol. 321:G213–G222. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iliev ID and Leonardi I: Fungal dysbiosis: Immunity and interactions at mucosal barriers. Nat Rev Immunol. 17:635–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, González A, et al: Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 185:3789–3806.e17. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X and Saxena D: The tumor mycobiome: A paradigm shift in cancer pathogenesis. Cell. 185:3648–3651. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y and Hong X: Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 11:4945–4956. 2021. View Article : Google Scholar : PubMed/NCBI | |
Coker OO: Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. J Gastroenterol Hepatol. 37:256–262. 2022. View Article : Google Scholar : PubMed/NCBI | |
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68:654–662. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X and Iliev ID: A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 185:3807–3822.e12. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer AC, de Oliveira Lino FS, Chan KF, Loos D, Imamovic L, et al: Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 8:1332020. View Article : Google Scholar : PubMed/NCBI | |
Viscoli C, Castagnola E and Machetti M: Antifungal treatment in patients with cancer. J Intern Med Suppl. 740:89–94. 1997. View Article : Google Scholar : PubMed/NCBI | |
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 40:153–167.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qiu X, Zhang F, Yang X, Wu N, Jiang W, Li X, Li X and Liu Y: Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep. 5:104162015. View Article : Google Scholar : PubMed/NCBI | |
Malik A, Sharma D, Malireddi RKS, Guy CS, Chang TC, Olsen SR, Neale G, Vogel P and Kanneganti TD: SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity. 49:515–530.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Medzhitov R: Origin and physiological roles of inflammation. Nature. 454:428–435. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S and Serhan CN: Molecular circuits of resolution: Formation and actions of resolvins and protectins. J Immunol. 174:4345–4355. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gordon S: Phagocytosis: An immunobiologic process. Immunity. 44:463–475. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, et al: Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes (Basel). 9:1022018. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr Med. 18:121–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Naylor MS, Stamp GW, Foulkes WD, Eccles D and Balkwill FR: Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest. 91:2194–2206. 1993. View Article : Google Scholar : PubMed/NCBI | |
Haghnegahdar H, Du J, Wang D, Strieter RM, Burdick MD, Nanney LB, Cardwell N, Luan J, Shattuck-Brandt R and Richmond A: The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol. 67:53–62. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thun MJ, Namboodiri MM, Calle EE, Flanders WD and Heath CW Jr: Aspirin use and risk of fatal cancer. Cancer Res. 53:1322–1327. 1993.PubMed/NCBI | |
Yang Q, Ouyang J, Pi D, Feng L and Yang J: Malassezia in inflammatory bowel disease: Accomplice of evoking tumorigenesis. Front Immunol. 13:8464692022. View Article : Google Scholar : PubMed/NCBI | |
Wolf AJ, Limon JJ, Nguyen C, Prince A, Castro A and Underhill DM: Malassezia spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. J Leukoc Biol. 109:161–172. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang YJ, Han Y, Sun YZ, Jiang HH, Liu M, Qi RQ and Gao XH: Extracellular vesicles derived from Malassezia furfur stimulate IL-6 production in keratinocytes as demonstrated in in vitro and in vivo models. J Dermatol Sci. 93:168–175. 2019. View Article : Google Scholar : PubMed/NCBI | |
Berti M and Vindigni A: Replication stress: Getting back on track. Nat Struct Mol Biol. 23:103–109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kawanishi S, Ohnishi S, Ma N, Hiraku Y and Murata M: Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 18:18082017. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wang G, Yu J and Sung JJY: Artificial intelligence and metagenomics in intestinal diseases. J Gastroenterol Hepatol. 36:841–847. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wong SH and Yu J: Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 16:690–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Perrone G and Gallo A: Aspergillus species and their associated mycotoxins. Methods Mol Biol. 1542:33–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, Chan FKL, Kristiansen K, Sung JJY, Wong SH and Yu J: Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 6:702018. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, Kwong TN, Han J, Liu W, Liu C, et al: Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 163:908–921. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, et al: Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 5:79802015. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kong C, Li H, Huang L, Qu X, Qin N and Qin H: Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 36:2457–2468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Richard ML, Liguori G, Lamas B, Brandi G, da Costa G, Hoffmann TW, Pierluigi Di Simone M, Calabrese C, Poggioli G, et al: Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes. 9:131–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cary JW, Ehrlich KC, Beltz SB, Harris-Coward P and Klich MA: Characterization of the Aspergillus ochraceoroseus aflatoxin/sterigmatocystin biosynthetic gene cluster. Mycologia. 101:352–362. 2009. View Article : Google Scholar : PubMed/NCBI | |
Frisvad JC, Skouboe P and Samson RA: Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol. 28:442–453. 2005. View Article : Google Scholar : PubMed/NCBI | |
Navale V, Vamkudoth KR, Ajmera S and Dhuri V: Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep. 8:1008–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S and Diana Di Mavungu J: Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf. 19:2797–2842. 2020. View Article : Google Scholar : PubMed/NCBI | |
McCullough AK and Lloyd RS: Mechanisms underlying aflatoxin-associated mutagenesis-implications in carcinogenesis. DNA Repair (Amst). 77:76–86. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bianco G, Russo R, Marzocco S, Velotto S, Autore G and Severino L: Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2. Toxicon. 59:644–650. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohammadi A, Mehrzad J, Mahmoudi M and Schneider M: Environmentally relevant level of aflatoxin B1 dysregulates human dendritic cells through signaling on key toll-like receptors. Int J Toxicol. 33:175–186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM and Mullin JM: Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 20:1425–1431. 1999. View Article : Google Scholar : PubMed/NCBI | |
Martin TA and Jiang WG: Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 1788:872–891. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W, et al: Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 7:238–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gmeiner WH, Hellmann GM and Shen P: Tissue-dependent and -independent gene expression changes in metastatic colon cancer. Oncol Rep. 19:245–251. 2008.PubMed/NCBI | |
Tjalsma H, Boleij A, Marchesi JR and Dutilh BE: A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects. Nat Rev Microbiol. 10:575–582. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 25:679–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al: Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 25:667–678. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Willette-Brown J, Song NY, Lomada D, Song Y, Xue L, Gray Z, Zhao Z, Davis SR, Sun Z, et al: Autoreactive T cells and chronic fungal infection drive esophageal carcinogenesis. Cell Host Microbe. 21:478–493.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Azad MAK, Sarker M, Li T and Yin J: Probiotic species in the modulation of gut microbiota: An overview. Biomed Res Int. 2018:94786302018. View Article : Google Scholar : PubMed/NCBI | |
Mozaffari Namin B, Daryani NE, Mirshafiey A, Yazdi MKS and Dallal MMS: Effect of probiotics on the expression of Barrett's oesophagus biomarkers. J Med Microbiol. 64:348–354. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosania R, Minenna MF, Giorgio F, Facciorusso A, De Francesco V, Hassan C, Panella C and Ierardi E: Probiotic multistrain treatment may eradicate Helicobacter pylori from the stomach of dyspeptics: A placebo-controlled pilot study. Inflamm Allergy Drug Targets. 11:244–249. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Chen K, Zheng YY, Zhang HW, Wang JS, Xia YJ, Dai WQ, Wang F, Shen M, Cheng P, et al: Meta-analysis of the efficacy of probiotics in Helicobacter pylori eradication therapy. World J Gastroenterol. 20:18013–18021. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K and Singh B: β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol. 98:595–609. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lipke PN and Ovalle R: Cell wall architecture in yeast: New structure and new challenges. J Bacteriol. 180:3735–3740. 1998. View Article : Google Scholar : PubMed/NCBI |