
Research progress on ferroptosis in gliomas (Review)
- Authors:
- Yujie Bo
- Luyan Mu
- Zhao Yang
- Wenhao Li
- Ming Jin
-
Affiliations: Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China - Published online on: November 27, 2023 https://doi.org/10.3892/ol.2023.14169
- Article Number: 36
-
Copyright: © Bo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI | |
McNamara C, Mankad K, Thust S, Dixon L, Limback-Stanic C, D'Arco F, Jacques TS and Löbel U: 2021 WHO classification of tumours of the central nervous system: A review for the neuroradiologist. Neuroradiology. 64:1919–1950. 2022. View Article : Google Scholar : PubMed/NCBI | |
Szklener K, Mazurek M, Wieteska M, Waclawska M, Bilski M and Mandziuk S: New directions in the therapy of glioblastoma. Cancers (Basel). 14:53772022. View Article : Google Scholar : PubMed/NCBI | |
Salvador GA: Iron in neuronal function and dysfunction. Biofactors. 36:103–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen S and Zhang Z, Zhang B, Huang Q, Liu Y, Qiu Y, Qiu Y, Long X, Wu M and Zhang Z: CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA. Int J Biol Sci. 18:841–857. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiao JT, Jiang C, Huang J, Dai MC, Wang C, Cheng C and Shao JF: Metabolic syndrome factors and risk of postoperative depression in high-grade glioma patients in a 1.5-year prospective study. Med Oncol. 31:2342014. View Article : Google Scholar : PubMed/NCBI | |
Tiller JW: Depression and anxiety. Med J Aust. 199((S6)): S28–S31. 2013.PubMed/NCBI | |
Middeldorp CM, Cath DC, Van Dyck R and Boomsma DI: The co-morbidity of anxiety and depression in the perspective of genetic epidemiology. A review of twin and family studies. Psychol Med. 35:611–624. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maes M, Kubera M, Obuchowiczwa E, Goehler L and Brzeszcz J: Depression's multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett. 32:7–24. 2011.PubMed/NCBI | |
Bunevicius A, Deltuva VP and Tamasauskas A: Association of pre-operative depressive and anxiety symptoms with five-year survival of glioma and meningioma patients: A prospective cohort study. Oncotarget. 8:57543–57551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gathinji M, McGirt MJ, Attenello FJ, Chaichana KL, Than K, Olivi A, Weingart JD, Brem H and Quinones-Hinojosa A: Association of preoperative depression and survival after resection of malignant brain astrocytoma. Surg Neurol. 71:299–303; discussion 303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Conrad M, Lorenz SM and Proneth B: Targeting ferroptosis: New hope for as-yet-incurable diseases. Trends Mol Med. 27:113–122. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhu C, Chen X, Guan G, Zou C, Shen S, Wu J, Wang Y, Lin Z, Chen L, et al: Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro Oncol. 24:1113–1125. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li R, Hou N, Zhang J, Wang T, Fan P, Ji C, Zhang B, Liu L, Wang Y, et al: PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis. J Immunother Cancer. 11:e0068902023. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Talty R and Johnson CH: Targeting ferroptosis to treat colorectal cancer. Trends Cell Biol. 33:185–188. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ramadori P, Gallage S and Heikenwalder MF: Unique tumour microenvironment: When ferroptosis activation boosts ICI of liver cancer. Gut. 72:1639–1641. 2023. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Wang H, Long J, Qiu Y and Xing XL: Establishing a prognostic model of ferroptosis- and immune-related signatures in kidney cancer: A study based on TCGA and ICGC databases. Front Oncol. 12:9313832022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112–119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, et al: Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA. 110:20364–20371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL and Hediger MA: Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 388:482–488. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ and Richardson DR: Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline. Biochem J. 462:e1–e3. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hurrell R and Egli I: Iron bioavailability and dietary reference values. Am J Clin Nutr. 91:1461S–1467S. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yanatori I, Richardson DR, Imada K and Kishi F: Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J Biol Chem. 291:17303–17318. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ, Bae DH, Merlot AM, Sahni S and Richardson DR: Duodenal cytochrome b (DCYTB) in iron metabolism: An update on function and regulation. Nutrients. 7:2274–2296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH and Goldman ID: Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 127:917–928. 2006. View Article : Google Scholar : PubMed/NCBI | |
White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK, Campagna D, Hall C, Bishop K, Calicchio ML, Lapierre A, et al: HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 17:261–270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nishito Y and Kambe T: Absorption mechanisms of iron, copper, and zinc: An overview. J Nutr Sci Vitaminol (Tokyo). 64:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wang Y, Tao L and Chen L: Iron transporters and ferroptosis in malignant brain tumors. Front Oncol. 12:8618342022. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Tao L, Cao X and Chen L: The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci. 15:131–144. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rouault TA and Cooperman S: Brain iron metabolism. Semin Pediatr Neurol. 13:142–148. 2006. View Article : Google Scholar : PubMed/NCBI | |
Engelhardt B and Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol. 31:497–511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Skjorringe T, Moller LB and Moos T: Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 3:1692012. View Article : Google Scholar : PubMed/NCBI | |
Li GJ, Choi BS, Wang X, Liu J, Waalkes MP and Zheng W: Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure. Neurotoxicology. 27:737–744. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zheng W and Monnot AD: Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol Ther. 133:177–188. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qian ZM and Ke Y: Brain iron transport. Biol Rev Camb Philos Soc. 94:1672–1684. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL and Connor JR: Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res. 66:1198–1207. 2001. View Article : Google Scholar : PubMed/NCBI | |
Carlson ES, Tkac I, Magid R, O'Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK and Petryk A: Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr. 139:672–679. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI and Duce JA: β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One. 9:e1141742014. View Article : Google Scholar : PubMed/NCBI | |
Miyajima H: Aceruloplasminemia. Neuropathology. 35:83–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD and Van der Schyf CJ: Brain iron toxicity: Differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res. 32:1196–1208. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y and Sun L: Adaptive changes allow targeting of ferroptosis for glioma treatment. Cell Mol Neurobiol. 42:2055–2074. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du H, Ren X, Bai J, Yang W, Gao Y and Yan S: Research progress of ferroptosis in adiposity-based chronic disease (ABCD). Oxid Med Cell Longev. 2022:10526992022. View Article : Google Scholar : PubMed/NCBI | |
Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Tian G, Fang X, Bai S, Yuan G and Pan Y: Ferroptosis and its potential role in glioma: From molecular mechanisms to therapeutic opportunities. Antioxidants (Basel). 11:21232022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A and Zhou D: Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol. 12:9898962022. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin D, Lee J, You JH, Kim D and Roh JL: Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biol. 30:1014182020. View Article : Google Scholar : PubMed/NCBI | |
Detivaud L, Island ML, Jouanolle AM, Ropert M, Bardou-Jacquet E, Le Lan C, Mosser A, Leroyer P, Deugnier Y, David V, et al: Ferroportin diseases: Functional studies, a link between genetic and clinical phenotype. Hum Mutat. 34:1529–1536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O'Connell D, Zhang P, Li Y, Gao T, et al: miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 25:1457–1472. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Chen X, Li J, Comish P, Kang R and Tang D: Transcription factors in ferroptotic cell death. Cancer Gene Ther. 27:645–656. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anandhan A, Dodson M, Schmidlin CJ, Liu P and Zhang DD: Breakdown of an ironclad defense system: The critical role of NRF2 in mediating ferroptosis. Cell Chem Biol. 27:436–447. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu XB, Yang F and Haile DJ: Functional consequences of ferroportin 1 mutations. Blood Cells Mol Dis. 35:33–46. 2005. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi R, Kato HE, Font J, Deshpande CN, Wada M, Ito K, Ishitani R, Jormakka M and Nureki O: Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat Commun. 6:85452015. View Article : Google Scholar : PubMed/NCBI | |
Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI | |
Pardridge WM: Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 32:1959–1972. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, et al: Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 66:449–465. 2017. View Article : Google Scholar : PubMed/NCBI | |
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422. e212018. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:6936–698. 2019. View Article : Google Scholar | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Wang L, Piao M, Chi G, Luo Y and Ge P: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 428:21–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhao Y, Yang HZ, Wang YJ and Chen Y: HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep. 41:BSR202029242021. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Zhou M, Yang Y and Luo M: The ubiquitin hydrolase OTUB1 promotes glioma cell stemness via suppressing ferroptosis through stabilizing SLC7A11 protein. Bioengineered. 12:12636–12645. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yi R, Wang H, Deng C, Wang X, Yao L, Niu W, Fei M and Zhaba W: Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci Rep. 40:BSR201933142020. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-Dependent pathway in glioblastoma cells. Yonsei Med J. 62:843–849. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA and Stockwell BR: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 26:623–633. e92019. View Article : Google Scholar : PubMed/NCBI | |
Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, et al: Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 16:497–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sukseree S, Schwarze UY, Gruber R, Gruber F, Quiles Del Rey M, Mancias JD, Bartlett JD, Tschachler E and Eckhart L: ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy. 16:1851–1857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Kong Y, Ma Y, Ni S, Wikerholmen T, Xi K, Zhao F, Zhao Z, Wang J, Huang B, et al: Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene. 40:1425–1439. 2021. View Article : Google Scholar : PubMed/NCBI | |
Santini ZI, Jose PE, York Cornwell E, Koyanagi A, Nielsen L, Hinrichsen C, Meilstrup C, Madsen KR and Koushede V: Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): A longitudinal mediation analysis. Lancet Public Health. 5:e62–e70. 2020. View Article : Google Scholar : PubMed/NCBI | |
Forero DA, Guio-Vega GP and Gonzalez-Giraldo Y: A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J Affect Disord. 218:86–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Lu Y and Xu J: Post-traumatic stress disorder, anxiety and depression symptoms among adolescent earthquake victims: Comorbidity and associated sleep-disturbing factors. Soc Psychiatry Psychiatr Epidemiol. 53:1241–1251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gialluisi A, Bonaccio M, Di Castelnuovo A, Costanzo S, De Curtis A, Sarchiapone M, Cerletti C, Donati MB, de Gaetano G and Iacoviello L; Moli-Sani Study Investigators, : Lifestyle and biological factors influence the relationship between mental health and low-grade inflammation. Brain Behav Immun. 85:4–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Treudler R, Zeynalova S, Riedel-Heller SG, Zuelke AE, Roehr S, Hinz A, Glaesmer H, Kage P, Loeffler M and Simon JC: Depression, anxiety and quality of life in subjects with atopic eczema in a population-based cross-sectional study in Germany. J Eur Acad Dermatol Venereol. 34:810–816. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singer S, Roick J, Danker H, Kortmann RD, Papsdorf K, Taubenheim S, Renovanz M, Jähne K and Meixensberger J: Psychiatric co-morbidity, distress, and use of psycho-social services in adult glioma patients-a prospective study. Acta Neurochir (Wien). 160:1187–1194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17 (Suppl 4):iv1–iv62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hao A, Huang J and Xu X: Anxiety and depression in glioma patients: Prevalence, risk factors, and their correlation with survival. Ir J Med Sci. 190:1155–1164. 2021. View Article : Google Scholar : PubMed/NCBI | |
Young K and Singh G: Biological mechanisms of cancer-induced depression. Front Psychiatry. 9:2992018. View Article : Google Scholar : PubMed/NCBI | |
Satin JR, Linden W and Phillips MJ: Depression as a predictor of disease progression and mortality in cancer patients: A meta-analysis. Cancer. 115:5349–5361. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sawangjit A, Oyanedel CN, Niethard N, Salazar C, Born J and Inostroza M: The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature. 564:109–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, Zhao J, Ji P, Zhong L, Licinio J and Xie P: Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation. 19:412022. View Article : Google Scholar : PubMed/NCBI | |
Jiao H, Yang H, Yan Z and Chen J, Xu M, Jiang Y, Liu Y, Xue Z, Ma Q, Li X and Chen J: Traditional Chinese formula xiaoyaosan alleviates depressive-like behavior in CUMS Mice by Regulating PEBP1-GPX4-Mediated Ferroptosis in the Hippocampus. Neuropsychiatr Dis Treat. 17:1001–1019. 2021. View Article : Google Scholar : PubMed/NCBI | |
Erratum to: path-03. Ferroptosis-related long non-coding rna signatures predict prognosis in patients with glioma. Neuro Oncol. 24:20102022. View Article : Google Scholar : PubMed/NCBI |