1
|
Desai A and Gyawali B: Financial toxicity
of cancer treatment: Moving the discussion from acknowledgement of
the problem to identifying solutions. Clin Med. 20:1002692020.
|
2
|
Nafisi S, Randel KR, Støer NC, Veierød MB,
Hoff G, Holme Ø, Schult AL and Botteri E: Association between use
of low-dose aspirin and detection of colorectal polyps and cancer
in a screening setting. Dig Liver Dis. 55:1126–1132. 2023.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jovčevska I: Next generation sequencing
and machine learning technologies are painting the epigenetic
portrait of glioblastoma. Front Oncol. 10:7982020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bao R, Huang L, Andrade J, Tan W, Kibbe
WA, Jiang H and Feng G: Review of current methods, applications,
and data management for the bioinformatics analysis of whole exome
sequencing. Cancer Inform. 13:67–82. 2014.PubMed/NCBI
|
6
|
Zhang K and Wang H: Cancer genome atlas
pan-cancer analysis project. Zhongguo Fei Ai Za Zhi. 18:219–223.
2015.(In Chinese). PubMed/NCBI
|
7
|
Tang N, Dou X, You X, Shi Q, Ke M and Liu
G: Pan-cancer analysis of the oncogenic role of discs large homolog
associated protein 5 (DLGAP5) in human tumors. Cancer Cell Inter.
21:4572021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liang W, Chen W, Wei J, Yao H, Shi J, Hou
X, Deng Y and Ou M: Zinc finger C3H1-type containing serves as a
novel prognostic biomarker in human pan-cancer. Gene.
820:1462512022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liang W, Mo C, Wei J, Chen W, Gong W, Shi
J, Hou X, Li C, Deng Y and Ou M: FAM65A as a novel prognostic
biomarker in human tumors reveal by a pan-cancer analysis. Discov
Oncol. 12:602021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mori Y, Taniyama Y, Tanaka S, Fukuchi H
and Terada Y: Microtubule-bundling activity of the centrosomal
protein, Cep169, and its binding to microtubules. Biochem Biophys
Res Commun. 467:754–759. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mori Y, Inoue Y, Tanaka S, Doda S,
Yamanaka S, Fukuchi H and Terada Y: Cep169, a novel microtubule
plus-end-tracking centrosomal protein, binds to CDK5RAP2 and
regulates microtubule stability. PLoS One. 10:e01409682015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Shintomi M, Shiratori M, Negishi L and
Terada Y: Identification of Cep169-interacting proteins and the in
vivo modification sites of Cep169 via proteomic analysis. Biochem
Biophys Res Commun. 495:2275–2281. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen H, Lin Z, Arnst KE, Miller DD and Li
W: Tubulin inhibitor-based antibody-drug conjugates for cancer
therapy. Molecules. 22:12812017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hammond JW, Cai D and Verhey KJ: Tubulin
modifications and their cellular functions. Curr Opin Cell Biol.
20:71–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kanakkanthara A and Miller JH:
βIII-tubulin overexpression in cancer: Causes, consequences, and
potential therapies. Biochim Biophys Acta Rev Cancer.
1876:1886072021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu ML, Horbinski CM, Garzotto M, Qian DZ,
Beer TM and Kyprianou N: Tubulin-targeting chemotherapy impairs
androgen receptor activity in prostate cancer. Cancer Res.
70:7992–8002. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kent WJ, Sugnet CW, Furey TS, Roskin KM,
Pringle TH, Zahler AM and Haussler D: The human genome browser at
UCSC. Genome Res. 12:996–1006. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q,
Li B and Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune
cells. Nucleic Acids Res. 48:W509–W514. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang Z, Kang B, Li C, Chen T and Zhang Z:
GEPIA2: An enhanced web server for large-scale expression profiling
and interactive analysis. Nucleic Acids Res. 47:W556–W560. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen F, Chandrashekar DS, Varambally S and
Creighton CJ: Pan-cancer molecular subtypes revealed by
mass-spectrometry-based proteomic characterization of more than 500
human cancers. Nat Commun. 10:56792019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)). Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu P, Heins ZJ, Muller JT, Katsnelson L,
de Bruijn I, Abeshouse AA, Schultz N, Fenyö D and Gao J:
Integration and analysis of cptac proteomics data in the context of
cancer genomics in the cBioPortal. Mol Cell Proteomics.
18:1893–1898. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li B, Severson E, Pignon JC, Zhao H, Li T,
Novak J, Jiang P, Shen H, Aster JC and Rodig S: Comprehensive
analyses of tumor immunity: Implications for cancer immunotherapy.
Genome Biol. 17:1742016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Racle J, de Jonge K, Baumgaertner P,
Speiser DE and Gfeller D: Simultaneous enumeration of cancer and
immune cell types from bulk tumor gene expression data. Elife.
6:e264762017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Becht E, Giraldo NA, Lacroix L, Buttard B,
Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman
C, Fridman WH and de Reyniès A: Estimating the population abundance
of tissue-infiltrating immune and stromal cell populations using
gene expression. Genome Biol. 17:1–20. 2016. View Article : Google Scholar
|
28
|
Aran D, Hu Z and Butte AJJGb: xCell:
Digitally portraying the tissue cellular heterogeneity landscape.
Genome Biol. 18:2202017. View Article : Google Scholar : PubMed/NCBI
|
29
|
De Meulenaere A, Vermassen T, Aspeslagh S,
Huvenne W, Van Dorpe J, Ferdinande L and Rottey S: Turning the
tide: Clinical utility of PD-L1 expression in squamous cell
carcinoma of the head and neck. Oral Oncol. 70:34–42. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lv M, Luo L and Chen X: The landscape of
prognostic and immunological role of myosin light chain 9 (MYL9) in
human tumors. Immun Inflamm Dis. 10:241–254. 2022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gene Ontology Consortium, . Going forward.
Nucleic Acids Res. 43:D1049–D1056. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen L, Zhang YH, Wang S, Zhang Y, Huang T
and Cai YD: Prediction and analysis of essential genes using the
enrichments of gene ontology and KEGG pathways. PLoS One.
12:e01841292017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kashiwagi S, Asano Y, Goto W, Takada K,
Takahashi K, Noda S, Takashima T, Onoda N, Tomita S, Ohsawa M, et
al: Use of Tumor-infiltrating lymphocytes (TILs) to predict the
treatment response to eribulin chemotherapy in breast cancer. PLoS
One. 12:e01706342017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fridman WH, Galon J, Dieu-Nosjean MC,
Cremer I, Fisson S, Damotte D, Pagès F, Tartour E and
Sautès-Fridman C: Immune infiltration in human cancer: Prognostic
significance and disease control. Curr Top Microbiol Immunol.
344:1–24. 2011.PubMed/NCBI
|
35
|
Zack TI, Schumacher SE, Carter SL,
Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J,
Mermel CH, et al: Pan-cancer patterns of somatic copy number
alteration. Nat Genet. 45:1134–1140. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Y, Xu H and Frishman D: Genomic
determinants of somatic copy number alterations across human
cancers. Hum Mol Genet. 25:1019–1030. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Greaves D and Calle Y: Epithelial
mesenchymal transition (EMT) and associated invasive adhesions in
solid and haematological tumours. Cells. 11:6492022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Luo C, Zhou M, Chen C, Li S, Li Q, Huang Y
and Zhou Z: A liposome-based combination strategy using doxorubicin
and a PI3K inhibitor efficiently inhibits pre-metastatic initiation
by acting on both tumor cells and tumor-associated macrophages.
Nanoscale. 14:4573–4587. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sato M, Shames DS and Hasegawa Y: Emerging
evidence of epithelial-to-mesenchymal transition in lung
carcinogenesis. Respirology. 17:1048–1059. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Scheel C and Weinberg RA: Phenotypic
plasticity and epithelial-mesenchymal transitions in cancer and
normal stem cells? Int J Cancer. 129:2310–2314. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Thiery JP: EMT: An update. Methods Mol
Biol. 2179:35–39. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu Y, Tao Z, Chen Y, Lin S, Zhu M, Ji W,
Liu X, Li T and Hu X: Exosomal MMP-1 transfers metastasis potential
in triple-negative breast cancer through PAR1-mediated EMT. Breast
Cancer Res Treat. 193:65–81. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Alrashed MM, Alharbi H, Alshehry AS, Ahmad
M and Aloahd MS: MiR-624-5p enhances NLRP3 augmented gemcitabine
resistance via EMT/IL-1β/Wnt/β-catenin signaling pathway in ovarian
cancer. J Reprod Immunol. 150:1034882022. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chang Y, Zhang J, Huo X, Qu X, Xia C,
Huang K, Xie F, Wang N, Wei X and Jia Q: Substrate rigidity
dictates colorectal tumorigenic cell stemness and metastasis via
CRAD-dependent mechanotransduction. Cell Rep. 38:1103902022.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Li A, Wu N and Sun J: E2F1-induced
microRNA-224-5p expression is associated with hepatocellular
carcinoma cell migration, invasion and epithelial-mesenchymal
transition via MREG. Oncol Lett. 23:822022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Maleki N, Yavari N, Ebrahimi M, Faiz AF,
Ravesh RK, Sharbati A, Panji M, Lorian K, Gravand A, Abbasi M, et
al: Silibinin exerts anti-cancer activity on human ovarian cancer
cells by increasing apoptosis and inhibiting epithelial-mesenchymal
transition (EMT). Gene. 823:1462752022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Martinou E, Moller-Levet C, Karamanis D,
Bagwan I and Angelidi AM: HOXB9 overexpression promotes colorectal
cancer progression and is associated with worse survival in liver
resection patients for colorectal liver metastases. Int J Mol Sci.
23:22812022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Owczarek C, Ortiz-Zapater E, Kim J,
Papaevangelou E, Santis G and Parsons M: CAR co-operates with
integrins to promote lung cancer cell adhesion and invasion. Front
Oncol. 12:8293132022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Koliaraki V, Prados A, Armaka M and
Kollias G: The mesenchymal context in inflammation, immunity and
cancer. Nat Immunol. 21:974–982. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zeng F, Gao M, Liao S, Zhou Z, Luo G and
Zhou Y: Role and mechanism of CD90+ fibroblasts in inflammatory
diseases and malignant tumors. Mol Med. 29:202023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhou J, Wei T and He Z: ADSCs enhance
VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m6A
modification to improve wound healing of diabetic foot ulcers. Mol
Med. 27:1462021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA,
Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al: Cancer-associated
fibroblasts regulate the plasticity of lung cancer stemness via
paracrine signalling. Nat Commun. 5:34722014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Heichler C, Scheibe K, Schmied A, Geppert
CI, Schmid B, Wirtz S, Thoma OM, Kramer V, Waldner MJ, Büttner C,
et al: STAT3 activation through IL-6/IL-11 in cancer-associated
fibroblasts promotes colorectal tumour development and correlates
with poor prognosis. Gut. 69:1269–1282. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS,
Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted
exosomes promote metastasis and chemotherapy resistance by
enhancing cell stemness and epithelial-mesenchymal transition in
colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Murata T, Mizushima H, Chinen I, Moribe H,
Yagi S, Hoffman RM, Kimura T, Yoshino K, Ueda Y, Enomoto T and
Mekada E: HB-EGF and PDGF mediate reciprocal interactions of
carcinoma cells with cancer-associated fibroblasts to support
progression of uterine cervical cancers. Cancer Res. 71:6633–6642.
2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Paauwe M, Schoonderwoerd MJ, Helderman RF,
Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM, Versteeg
HH, Snaar-Jagalska BE, et al: Endoglin expression on
cancer-associated fibroblasts regulates invasion and stimulates
colorectal cancer metastasis. Clin Cancer Res. 24:6331–6344. 2018.
View Article : Google Scholar : PubMed/NCBI
|