Roles of ubiquitin‑specific protease 13 in normal physiology and tumors (Review)
- Authors:
- Yun Tao
- Xiaohong Xu
- Rong Shen
- Xiaobing Miao
- Song He
-
Affiliations: Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China, Department of Hematological Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China, Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China - Published online on: December 14, 2023 https://doi.org/10.3892/ol.2023.14191
- Article Number: 58
-
Copyright: © Tao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Akutsu M, Dikic I and Bremm A: Ubiquitin chain diversity at a glance. J Cell Sci. 129:875–880. 2016.PubMed/NCBI | |
Zhang YH, Zhou CJ, Zhou ZR, Song AX and Hu HY: Domain analysis reveals that a deubiquitinating enzyme USP13 performs non-activating catalysis for Lys63-linked polyubiquitin. PLoS One. 6:e293622011. View Article : Google Scholar : PubMed/NCBI | |
Talreja J, Bauerfeld C, Wang X, Hafner M, Liu Y and Samavati L: MKP-1 modulates ubiquitination/phosphorylation of TLR signaling. Life Sci Alliance. 4:e2021011372021. View Article : Google Scholar : PubMed/NCBI | |
Liu X and Moussa C: Regulatory role of ubiquitin specific protease-13 (USP13) in misfolded protein clearance in neurodegenerative diseases. Neuroscience. 460:161–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Loix M, Zelcer N, Bogie JFJ and Hendriks JJA: The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol. S0962-8924(23)00192-7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ciechanover A and Ben-Saadon R: N-terminal ubiquitination: More protein substrates join in. Trends Cell Biol. 14:103–106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ and Hansen TH: Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol. 177:613–624. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nathan JA, Kim HT, Ting L, Gygi SP and Goldberg AL: Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. 32:552–565. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Gan W, Su S, Hauenstein AV, Fu TM, Brasher B, Schwerdtfeger C, Liang AC, Xu M and Wei W: K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal. 11:eaar81332018. View Article : Google Scholar : PubMed/NCBI | |
Wing SS: Deubiquitinating enzymes-the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol. 35:590–605. 2003. View Article : Google Scholar : PubMed/NCBI | |
Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, Gu W, Kluger H and Ronai ZA: USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J Biol Chem. 286:27333–27341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clague MJ, Urbe S and Komander D: Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI | |
Morgan EL, Patterson MR, Barba-Moreno D, Scarth JA, Wilson A and Macdonald A: The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene. 40:2112–2129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeng Q, Li Z, Zhao X, Guo L, Yu C, Qin J, Zhang S, Zhang Y and Yang X: Ubiquitin-specific protease 7 promotes osteosarcoma cell metastasis by inducing epithelial-mesenchymal transition. Oncol Rep. 41:543–551. 2019.PubMed/NCBI | |
Timms KM, Ansari-Lari MA, Morris W, Brown SN and Gibbs RA: The genomic organization of isopeptidase T-3(ISOT-3), a new member of the ubiquitin specific protease family (UBP). Gene. 217:101–106. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ren H, Mu W and Xu Q: miR-19a-3p inhibition alleviates sepsis-induced lung injury via enhancing USP13 expression. Acta Biochim Pol. 68:201–206. 2021.PubMed/NCBI | |
Biterge Sut B: Molecular profiling of immune cell-enriched Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) interacting protein USP13. Life Sci. 258:1181702020. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Li Y, Ye Q, Miao J, Taleb SJ, Zhao Y and Zhao J: Lipopolysaccharide reduces USP13 stability through c-Jun N-terminal kinase activation in Kupffer cells. J Cell Physiol. 236:4360–4368. 2021. View Article : Google Scholar : PubMed/NCBI | |
Darling S, Fielding AB, Sabat-Pospiech D, Prior IA and Coulson JM: Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans. 45:1125–1136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Zhang Q, Jing YY, Zhang M, Wang HY, Cai Z, Liuyu T, Zhang ZD, Xiong TC, Wu Y, et al: USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat Commun. 8:155342017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu Y, Tang L, Qi S, Mi Y, Liu D and Tian Q: Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE. Int J Mol Med. 40:47–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Matsumoto S, Endo A, Fukushima T, Kawahara H, Saeki Y and Komada M: Deubiquitinases USP5 and USP13 are recruited to and regulate heat-induced stress granules by deubiquitinating activities. J Cell Sci. 131:jcs2108562018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang C, Li H, Lv F, Li X, Qian X, Fu L, Xu B and Guo X: Elevated Aurora B expression contributes to chemoresistance and poor prognosis in breast cancer. Int J Clin Exp Pathol. 8:751–757. 2015.PubMed/NCBI | |
Antao AM, Kaushal K, Das S, Singh V, Suresh B, Kim KS and Ramakrishna S: USP48 governs cell cycle progression by regulating the protein level of Aurora B. Int J Mol Sci. 22:85082021. View Article : Google Scholar : PubMed/NCBI | |
Borah NA and Reddy MM: Aurora Kinase B Inhibition: A potential therapeutic strategy for cancer. Molecules. 26:19812021. View Article : Google Scholar : PubMed/NCBI | |
Punt S, Malu S, McKenzie JA, Manrique SZ, Doorduijn EM, Mbofung RM, Williams L, Silverman DA, Ashkin EL, Dominguez AL, et al: Aurora kinase inhibition sensitizes melanoma cells to T-cell-mediated cytotoxicity. Cancer Immunol Immunother. 70:1101–1113. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Loyola A, Fernandez-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, Cañamero M, de Martino A, Martínez-Ramírez Á, de Cárcer G, et al: Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol. 35:3566–3578. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Gutierrez GJ and Ronai ZA: Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proc Natl Acad Sci USA. 108:9119–9124. 2011. View Article : Google Scholar : PubMed/NCBI | |
Esposito M, Akman HB, Giron P, Ceregido MA, Schepers R, Ramos Paez LC, La Monaca E, De Greve J, Coux O, De Trez C, et al: USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene. 39:6009–6023. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW and Pearl LH: Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. Elife. 8:e443532019. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Graves JD, Lee YJ, Lin FT and Lin WC: Cell Cycle-Dependent Switch of TopBP1 Functions by Cdk2 and Akt. Mol Cell Biol. 40:e005992020. View Article : Google Scholar : PubMed/NCBI | |
Kanginakudru S, DeSmet M, Thomas Y, Morgan IM and Androphy EJ: Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication. Virology. 478:129–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Zhao F, Gao H, Qin S, Hou J, Deng M, Kloeber JA, Huang J, Zhou Q, Guo G, et al: USP13 regulates the replication stress response by deubiquitinating TopBP1. DNA Repair (Amst). 100:1030632021. View Article : Google Scholar : PubMed/NCBI | |
He X, Kim JS, Diaz-Martinez LA, Han C, Lane WS, Budnik B and Waldman T: USP13 interacts with cohesin and regulates its ubiquitination in human cells. J Biol Chem. 296:1001942021. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Yang X, Long G, Hu Y, Gu Z, Boisclair YR and Long Q: ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells. J Biol Chem. 295:16743–16753. 2020. View Article : Google Scholar : PubMed/NCBI | |
Byun H, Gou Y, Zook A, Lozano MM and Dudley JP: ERAD and how viruses exploit it. Front Microbiol. 5:3302014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Soetandyo N, Lee JG, Liu L, Xu Y, Clemons WM Jr and Ye Y: USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. Elife. 3:e013692014. View Article : Google Scholar : PubMed/NCBI | |
Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X and Llobet-Navas D: Autophagy in the physiological endometrium and cancer. Autophagy. 17:1077–1095. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Song W, Postoak JL, Chen J, Martinez J, Zhang J, Wu L and Van Kaer L: Autophagy-related protein PIK3C3/VPS34 controls T cell metabolism and function. Autophagy. 17:1193–1204. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhao Z, Wu T, Zhang Q, Lu F, Gu J, Jiang T and Xue J: Inhibition of autophagy-dependent pyroptosis attenuates cerebral ischaemia/reperfusion injury. J Cell Mol Med. 25:5060–5069. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Jin S and Cui J: The NEDD4-USP13 axis facilitates autophagy via deubiquitinating PIK3C3. Autophagy. 16:1150–1151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Snyder NA and Silva GM: Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem. 297:1010772021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Wang F: Post-Translational modifications of deubiquitinating enzymes: Expanding the ubiquitin code. Front Pharmacol. 12:6850112021. View Article : Google Scholar : PubMed/NCBI | |
Elsocht M, Giron P, Maes L, Versees W, Gutierrez GJ, De Greve J and Ballet S: Structure-Activity Relationship (SAR) Study of Spautin-1 to Entail the Discovery of Novel NEK4 Inhibitors. Int J Mol Sci. 22:6352021. View Article : Google Scholar : PubMed/NCBI | |
Cheung HH, Yang Y, Lee TL, Rennert O and Chan WY: Hypermethylation of genes in testicular embryonal carcinomas. Br J Cancer. 114:230–236. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xu Y, Zhang W, Gao X, Luo G, Song H, Liu J and Wang H: Identification of targets of JS-K against HBV-positive human hepatocellular carcinoma HepG2.2.15 cells with iTRAQ proteomics. Sci Rep. 11:103812021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Lin W, Li R, Cheng H, Sun S, Shao F, Yang Y, Zhang L, Feng X, Gao S, et al: The Deubiquitinase USP13 maintains cancer cell stemness by promoting FASN stability in small cell lung cancer. Front Oncol. 12:8999872022. View Article : Google Scholar : PubMed/NCBI | |
Forghanifard MM, Azaraz S, Ardalan Khales S, Morshedi Rad D and Abbaszadegan MR: MAML1 promotes ESCC aggressiveness through upregulation of EMT marker TWIST1. Mol Biol Rep. 47:2659–2668. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han C, Yang L, Choi HH, Baddour J, Achreja A, Liu Y, Li Y, Li J, Wan G, Huang C, et al: Amplification of USP13 drives ovarian cancer metabolism. Nat Commun. 7:135252016. View Article : Google Scholar : PubMed/NCBI | |
Qu Z, Zhang R, Su M and Liu W: UsP13 serves as a tumor suppressor via the PTEN/AKT pathway in oral squamous cell carcinoma. Cancer Manag Res. 11:9175–9183. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, Wang M, Chen D, Sun Y, Hung MC, et al: Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 15:1486–1494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, et al: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 147:223–234. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang Y, Liu C, Zhang Y, Wang D, Wang S, Wu Y, Liu F, Li Q, Liu X, et al: Amplification of USP13 drives non-small cell lung cancer progression mediated by AKT/MAPK signaling. Biomed Pharmacother. 114:1088312019. View Article : Google Scholar : PubMed/NCBI | |
Meng LB, Hu GF, Shan MJ, Zhang YM, Yu ZM, Liu YQ, Xu HX, Wang L, Gong T and Liu DP: Citrate Synthase and OGDH as potential biomarkers of atherosclerosis under chronic stress. Oxid Med Cell Longev. 2021:99579082021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ye W, Yan X, Guo Q, Ma Q, Lin F, Huang J and Jin J: Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia. J Transl Med. 17:1492019. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H, Li R, Lu W, Wang Y and Liu P: Targeting ACLY Attenuates Tumor Growth and Acquired Cisplatin Resistance in Ovarian Cancer by Inhibiting the PI3K-AKT Pathway and Activating the AMPK-ROS Pathway. Front Oncol. 11:6422292021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao Q, Ding M, Liu Y, Huang W and Cai Z: LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression. Biosci Rep. 39:BSR201823722019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu K, Cui J, Xiong J, Wu H, Peng T and Guo Y: Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J Exp Clin Cancer Res. 40:1242021. View Article : Google Scholar : PubMed/NCBI | |
Han C, Lu X and Nagrath D: Regulation of protein metabolism in cancer. Mol Cell Oncol. 5:e12853842018. View Article : Google Scholar : PubMed/NCBI | |
De Blasio A, Vento R and Di Fiore R: Mcl-1 targeting could be an intriguing perspective to cure cancer. J Cell Physiol. 233:8482–8498. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, Wang X, Di W and Zhuang G: Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 9:2152018. View Article : Google Scholar : PubMed/NCBI | |
Abdul Rahman SF, Muniandy K, Soo YK, Tiew EYH, Tan KX, Bates TE and Mohana-Kumaran N: Co-inhibition of BCL-XL and MCL-1 with selective BCL-2 family inhibitors enhances cytotoxicity of cervical cancer cell lines. Biochem Biophys Rep. 22:1007562022.PubMed/NCBI | |
Chen Y, Sun XX, Sears RC and Dai MS: Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis. 6:359–371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, Chen C, Xie Q, Mack SC, Wang X, et al: Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 214:245–267. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Fiske B, Kawakami A, Li J and Fisher DE: Regulation of MITF stability by the USP13 deubiquitinase. Nat Commun. 2:4142011. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Bai S, Dai Y, Yang N, Li J, Zhang X, Wang F, Zhao B, Bao G, Chen Y and Wu X: Deubiquitination of MITF-M regulates melanocytes proliferation and apoptosis. Front Mol Biosci. 8:6927242021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Lin M, Feng X, Ma F, Zhu Y, Liu X, Qu C, Sui H, Sun B, Zhu A, et al: Targeting CLK3 inhibits the progression of cholangiocarcinoma by reprogramming nucleotide metabolism. J Exp Med. 217:e201917792020. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Zhou J, Liu X, Xu Y, Hepperla AJ, Simon JM, Wang T, Yao H, Liao C, Baldwin AS, et al: USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc Natl Acad Sci USA. 119:e21198541192022. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Jin S, Wu Y, Xian H, Tian S, Liu DA, Guo Z and Cui J: Auto-ubiquitination of NEDD4-1 Recruits USP13 to facilitate autophagy through deubiquitinating VPS34. Cell Rep. 30:2807–2819. e42020. View Article : Google Scholar : PubMed/NCBI | |
Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L and Levine B: Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci USA. 118:e20204781182021. View Article : Google Scholar : PubMed/NCBI | |
Matthew-Onabanjo AN, Janusis J, Mercado-Matos J, Carlisle AE, Kim D, Levine F, Cruz-Gordillo P, Richards R, Lee MJ and Shaw LM: Beclin 1 promotes endosome recruitment of hepatocyte growth factor tyrosine kinase substrate to suppress tumor proliferation. Cancer Res. 80:249–262. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Ye Z, Wang J, Chen Q, Huang D and Liu H: USP13 mediates PTEN to ameliorate osteoarthritis by restraining oxidative stress, apoptosis and inflammation via AKT-dependent manner. Biomed Pharmacother. 133:1110892021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, Zhao J, Zeng Y and Mao X: The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem. 297:1010882021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Z, Lu J and Zhang H: Circular RNA circ-PTEN elevates PTEN inhibiting the proliferation of non-small cell lung cancer cells. Hum Cell. 34:1174–1184. 2021. View Article : Google Scholar : PubMed/NCBI | |
Geng J, Huang X, Li Y, Xu X, Li S, Jiang D, Liang J, Jiang D, Wang C and Dai H: Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respir Res. 16:1242015. View Article : Google Scholar : PubMed/NCBI | |
Che K, Han W, Li D, Cui S, Zhang M, Yang X and Niu H: Correlations between glycolysis with clinical traits and immune function in bladder urothelial carcinoma. Biosci Rep. 41:BSR202039822021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xu M, Li Y, Huang Z, Zhou J, Zhao Q, Le K, Dong F, Wan C and Yi P: Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J Transl Med. 18:922020. View Article : Google Scholar : PubMed/NCBI | |
Xiang S, Fang J, Wang S, Deng B and Zhu L: MicroRNA135b regulates the stability of PTEN and promotes glycolysis by targeting USP13 in human colorectal cancers. Oncol Rep. 33:1342–1348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y, Kang J, Li S and Wu H: USP13 promotes breast cancer metastasis through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr). 46:717–733. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zheng J, Qiao L and Zhao W: Deubiquitinase USP13 promotes the epithelial-mesenchymal transition and metastasis in gastric cancer by maintaining Snail protein. Pathol Res Pract. 229:1537052022. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Chen T, Li L, Liu X, Liu Y, Zhao J, Lu Q, Zeng Z, Xu Q, Huang D and Tu K: Hypoxia-Inducible ubiquitin specific peptidase 13 contributes to tumor growth and metastasis via enhancing the toll-like receptor 4/Myeloid differentiation primary response gene 88/Nuclear Factor-κB pathway in hepatocellular carcinoma. Front Cell Dev Biol. 8:5873892020. View Article : Google Scholar : PubMed/NCBI | |
Eluard B, Thieblemont C and Baud V: NF-κB in the New Era of cancer therapy. Trends Cancer. 6:677–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hiramatsu T, Yoshizawa J, Miyaguni K, Sugihara T, Harada A, Kaji S, Uchida G, Kanamori D, Baba Y, Ashizuka S and Ohki T: Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma through suppression of NF-κB activation. Pediatr Surg Int. 34:443–450. 2018. View Article : Google Scholar : PubMed/NCBI | |
Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 38:2592019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ou Z, Sun Y, Yeh S, Wang X, Long J and Chang C: Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene. 36:1644–1654. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lim Y and Lee DY: Identification of genetic mutations related to invasion and metastasis of acral melanoma via whole-exome sequencing. J Dermatol. 48:999–1006. 2021. View Article : Google Scholar : PubMed/NCBI | |
Parag-Sharma K, Tasoulas J, Musicant AM, do Nascimento-Filho CHV, Zhu Z, Twomey C, Liu P, Castilho RM and Amelio AL: Synergistic efficacy of combined EGFR and HDAC inhibitors overcomes tolerance to EGFR monotherapy in salivary mucoepidermoid carcinoma. Oral Oncol. 115:1051662021. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Li X, Xie X, Sun X, Liu J, Zhang J, Wang C, Yu J and Xie P: EGFR inhibitors as adjuvant therapy for resected non-small cell lung cancer harboring EGFR mutations. Lung Cancer. 136:6–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Giron P, Eggermont C, Noeparast A, Vandenplas H, Teugels E, Forsyth R, De Wever O, Aza-Blanc P, Gutierrez GJ and De Grève J: Targeting USP13-mediated drug tolerance increases the efficacy of EGFR inhibition of mutant EGFR in non-small cell lung cancer. Int J Cancer. 148:2579–2593. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Shu Y, Lu Y and Sun Y: Chloroquine combined with imatinib overcomes imatinib resistance in gastrointestinal stromal tumors by inhibiting autophagy via the MAPK/ERK Pathway. Onco Targets Ther. 13:6433–6441. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N, Wang Z, Yang Y, Liu Z, He Z, et al: N6-methyladenosine-modified USP13 induces pro-survival autophagy and imatinib resistance via regulating the stabilization of autophagy-related protein 5 in gastrointestinal stromal tumors. Cell Death Differ. 30:544–559. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Luo K, Yin Y, Wu C, Deng M, Li L, Li L, Chen Y, Nowsheen S, Lou Z and Yuan J: USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun. 8:157522017. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhang J, Liang L, Liu N, Qi M, Zhao S, Su J, Liu J, Peng C, Chen X and Liu H: Potent USP10/13 antagonist spautin-1 suppresses melanoma growth via ROS-mediated DNA damage and exhibits synergy with cisplatin. J Cell Mol Med. 24:4324–4340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Balaraman K, Lynch CC, Hebron M, Wolf C and Moussa C: Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology. Metabolites. 11:6222021. View Article : Google Scholar : PubMed/NCBI | |
Jacomin AC, Taillebourg E and Fauvarque MO: Deubiquitinating enzymes related to autophagy: New therapeutic opportunities? Cells. 7:1122018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z and Wei W: Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta. 1855:50–60. 2015.PubMed/NCBI | |
Kaushal K, Antao AM, Kim KS and Ramakrishna S: Deubiquitinating enzymes in cancer stem cells: Functions and targeted inhibition for cancer therapy. Drug Discov Today. 23:1974–1982. 2018. View Article : Google Scholar : PubMed/NCBI |