Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Authors:
- Ye Hu
- Lei Cheng
- Shuguang Du
- Kesi Wang
- Shuangping Liu
-
Affiliations: Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China - Published online on: December 20, 2023 https://doi.org/10.3892/ol.2023.14200
- Article Number: 67
-
Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dizdaroglu M: Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 763:212–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moldogazieva NT, Lutsenko SV and Terentiev AA: Reactive oxygen and nitrogen species-induced protein modifications: Implication in carcinogenesis and anticancer therapy. Cancer Res. 78:6040–6047. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Galadari S, Rahman A, Pallichankandy S and Thayyullathil F: Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med. 104:144–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, et al: Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 23:1144–1170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saikolappan S, Kumar B, Shishodia G, Koul S and Koul HK: Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 452:132–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, Dayem AA and Cho SG: Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci. 18:15442017. View Article : Google Scholar : PubMed/NCBI | |
Feno S, Butera G, Vecellio Reane D, Rizzuto R and Raffaello A: Crosstalk between calcium and ROS in pathophysiological conditions. Oxid Med Cell Longev. 2019:93240182019. View Article : Google Scholar : PubMed/NCBI | |
Mittler R: ROS Are Good. Trends Plant Sci. 22:11–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yoneyama M, Kawada K, Gotoh Y, Shiba T and Ogita K: Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int. 56:740–746. 2010. View Article : Google Scholar : PubMed/NCBI | |
Trachootham D, Alexandre J and Huang P: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP and Alexiou GA: The role of curcumin in cancer treatment. Biomedicines. 9:10862021. View Article : Google Scholar : PubMed/NCBI | |
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF and Walters MA: The essential medicinal chemistry of curcumin. J Med Chem. 60:1620–1637. 2017. View Article : Google Scholar : PubMed/NCBI | |
Simon HU, Haj-Yehia A and Levi-Schaffer F: Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5:415–418. 2000. View Article : Google Scholar : PubMed/NCBI | |
Abd El-Hack ME, El-Saadony MT, Swelum AA, Arif M, Abo Ghanima MM, Shukry M, Noreldin A, Taha AE and El-Tarabily KA: Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J Sci Food Agric. 101:5747–5762. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Hu B, An HM, Shen KP, Xu L, Deng S and Wei MM: Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol Rep. 29:1851–1858. 2013. View Article : Google Scholar : PubMed/NCBI | |
He YC, He L, Khoshaba R, Lu FG, Cai C, Zhou FL, Liao DF and Cao D: Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-Mediated mechanism. Molecules. 24:41792019. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Gong X, Geng M, Duan S, Qiao P, Sun F, Zhu Z and Du B: Cascade nanozymes based on the ‘butterfly effect’ for enhanced starvation therapy through the regulation of autophagy. Biomater Sci. 10:4008–4022. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kotha RR and Luthria DL: Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 24:29302019. View Article : Google Scholar : PubMed/NCBI | |
Amalraj A, Pius A and Gopi S and Gopi S: Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-A review. J Tradit Complement Med. 7:205–233. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gopi S, Jacob J, Varma K, Jude S, Amalraj A, Arundhathy CA, George R, Sreeraj TR, Divya C, Kunnumakkara AB and Stohs SJ: Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label Parallel-arm study. Phytother Res. 31:1883–1891. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S and Aggarwal BB: Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br J Pharmacol. 174:1325–1348. 2017. View Article : Google Scholar : PubMed/NCBI | |
Manica D, Silva GBD, Silva APD, Marafon F, Maciel SFVO, Bagatini MD and Moreno M: Curcumin promotes apoptosis of human melanoma cells by caspase 3. Cell Biochem Funct. Oct 4–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Wei H, Li X, Liu F, Li Y, Luo B, Huang X, Chen H, Wen B and Ma P: Curcumin inhibits the development of colorectal cancer via regulating the USP4/LAMP3 pathway. Naunyn Schmiedebergs Arch Pharmacol. Sep 20–2023.(Epub ahead of print). View Article : Google Scholar | |
Gabr SA, Elsaed WM, Eladl MA, El-Sherbiny M, Ebrahim HA, Asseri SM, Eltahir YAM, Elsherbiny N and Eldesoqui M: Curcumin modulates oxidative stress, fibrosis, and apoptosis in Drug-resistant cancer cell lines. Life (Basel). 12:14272022.PubMed/NCBI | |
Lin X, Wang L, Zhao L, Zhu Z, Chen T, Chen S, Tao Y, Zeng T, Zhong Y, Sun H, et al: Curcumin micelles suppress gastric tumor cell growth by upregulating ROS generation, disrupting redox equilibrium and affecting mitochondrial bioenergetics. Food Funct. 11:4146–4159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ and Steward WP: Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 7:1894–1900. 2001.PubMed/NCBI | |
Lao CD, Ruffin MT IV, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL and Brenner DE: Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 6:102006. View Article : Google Scholar : PubMed/NCBI | |
Faião-Flores F, Suarez JA, Pardi PC and Maria DA: DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: A curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment. Tumour Biol. 33:775–785. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR and Preuss HG: Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules. 25:13972020. View Article : Google Scholar : PubMed/NCBI | |
Yang ZJ, Huang SY, Zhou DD, Xiong RG, Zhao CN, Fang AP, Zhang YJ, Li HB and Zhu HL: Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants (Basel). 11:14812022. View Article : Google Scholar : PubMed/NCBI | |
Freyre-Fonseca V, Delgado-Buenrostro NL, Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T, Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta CP, et al: Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett. 202:111–119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cremers CM and Jakob U: Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 288:26489–26496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI and Pedraza-Chaverrí J: Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim). 347:873–884. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ and Sahebkar A: Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol. 234:12537–12550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Tian H, Shen P, Xu L, Liu H, Zhu J, Wang Q and Shi Y: Curcumin alleviates nuclear factor-κB/NOD-like receptor protein 3 mediated renal injury caused by acute respiratory distress syndrome through reducing mitochondrial oxidative stress. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 35:393–397. 2023.(In Chinese). PubMed/NCBI | |
Feng L, Wang Y, Bi Z, Wei Z, Zhang H and Zhang S: Single-Atom nanoenzyme-based autoluminescence system for cancer cell imaging and mitochondrial-targeted therapy. ACS Appl Bio Mater. 6:5086–5096. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Gao Z, Song H, Zhou Y, Yuan W, Wang X, Zhang L, Hong Y, Meng Y, Hu J, et al: Synthesis, biological evaluation and action mechanism study of new mitochondria-targeted curcumin derivative as potential antitumor drugs. Chem Biodivers. 20:e2023000862023. View Article : Google Scholar : PubMed/NCBI | |
Sarosiek K and Wood KC: Endogenous and imposed determinants of apoptotic vulnerabilities in cancer. Trends Cancer. 9:96–110. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Tao Y, Hu K and Lu J: GRP78 inhibitor HA15 increases the effect of Bortezomib on eradicating multiple myeloma cells through triggering endoplasmic reticulum stress. Heliyon. 9:e198062023. View Article : Google Scholar : PubMed/NCBI | |
Liczbiński P, Michałowicz J and Bukowska B: Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother Res. 34:1992–2005. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Cheng X, Xu S, Bao J and Yu HJM: Curcumin induces endoplasmic reticulum stress-associated apoptosis in human papillary thyroid carcinoma BCPAP cells via disruption of intracellular calcium homeostasis. Medicine (Baltimore). 97:e110952018. View Article : Google Scholar : PubMed/NCBI | |
Goswami RS, Patel KP, Singh RR, Meric-Bernstam F, Kopetz ES, Subbiah V, Alvarez RH, Davies MA, Jabbar KJ, Roy-Chowdhuri S, et al: Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors. Clin Cancer Res. 21:2644–2651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hail N Jr: Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis. Free Radic Biol Med. 44:1382–1393. 2008. View Article : Google Scholar : PubMed/NCBI | |
Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB and Sivalingam N: Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res. 51:67–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sritharan S and Sivalingam N: Curcumin induced apoptosis is mediated through oxidative stress in mutated p53 and wild type p53 colon adenocarcinoma cell lines. J Biochem Mol Toxicol. 35:e226162021. View Article : Google Scholar : PubMed/NCBI | |
Onorati AV, Dyczynski M, Ojha R and Amaravadi RK: Targeting autophagy in cancer. Cancer. 124:3307–3318. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B and Najafi M: MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol. 892:1736602021. View Article : Google Scholar : PubMed/NCBI | |
Liu LD, Pang YX, Zhao XR, Li R, Jin CJ, Xue J, Dong RY and Liu PS: Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet. 299:1627–1639. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mortezaee K, Parwaie W, Motevaseli E, Mirtavoos-Mahyari H, Musa AE, Shabeeb D, Esmaely F, Najafi M and Farhood B: Targets for improving tumor response to radiotherapy. Int Immunopharmacol. 76:1058472019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang J, Zhang CJ, Wong YK, Lim TK, Hua ZC, Liu B, Tannenbaum SR, Shen HM and Lin Q: In situ proteomic profiling of curcumin targets in HCT116 colon cancer cell line. Sci Rep. 6:221462016. View Article : Google Scholar : PubMed/NCBI | |
Liang HH, Huang CY, Chou CW, Makondi PT, Huang MT, Wei PL and Chang YJ: Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci. 209:43–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wu X, Al Rudaisat M, Song Y and Cheng H: Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells. J Cancer. 11:6704–6715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang M, Shang M, Yuan F, Guo W and Wang C: EF24 exerts cytotoxicity against NSCLC via inducing ROS accumulation. Cancer Cell Int. 21:5312021. View Article : Google Scholar : PubMed/NCBI | |
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang X, Guo SM, Ma JQ, Xu FF, Sun HM, et al: Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol Sin. 44:622–634. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Li Y, Zhao J, Liang L, Zhang K, Zhang X, Yu H and Du H: Heme oxygenase-1 increases intracellular iron storage and suppresses inflammatory response of macrophages by inhibiting M1 polarization. Metallomics. 15:mfad0622023. View Article : Google Scholar : PubMed/NCBI | |
Giorgi G, Mascaró M, Gandini N, Rabassa ME, Coló GP, Arévalo J, Curino AC, Facchinetti MM and Roque ME: Iron cycle disruption by heme oxygenase-1 activation leads to a reduced breast cancer cell survival. Biochim Biophys Acta Mol Basis Dis. 1869:1666212023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H, Li J, Fatima S and Liu Q: Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep. 13:155152023. View Article : Google Scholar : PubMed/NCBI | |
Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L and Yu H: Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020. View Article : Google Scholar : PubMed/NCBI | |
Suttner DM and Dennery PA: Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J. 13:1800–1809. 1999. View Article : Google Scholar : PubMed/NCBI | |
McBean GJ: The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids. 42:199–205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Zhu CY, Wu ZG, Guo X and Zou W: The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Oncogene. 38:4028–4046. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X and Guan J: Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One. 17:e02613702022. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, Chen Q, Zhang J and Cao J: Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 12:1219–1230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-Mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frank D and Vince JE: Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26:99–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang WF, Gong YX, Li HF, Sun FL, Li WL, Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, et al: Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells. In Vivo. 35:249–257. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Zheng Z, Wei X, Liu Y, Li W, Fang B, Yun D, Dong Z, Yi B, Li W, et al: Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib Med Chem. 37:2357–2369. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li AN, Li S, Zhang YJ, Xu XR, Chen YM and Li HB: Resources and biological activities of natural polyphenols. Nutrients. 6:6020–6047. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Chen L, Zhu F, Han X, Sun L and Chen K: The cytotoxicity effect of resveratrol: Cell cycle arrest and induced apoptosis of breast cancer 4T1 cells. Toxins (Basel). 11:7312019. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Aoki R and Terasaki M: Potential chemopreventive effects of dietary combination of phytochemicals against cancer development. Pharmaceuticals (Basel). 16:15912023. View Article : Google Scholar : PubMed/NCBI | |
Arena A, Romeo MA, Benedetti R, Masuelli L, Bei R, Gilardini Montani MS and Cirone M: New insights into curcumin- and resveratrol-mediated anti-cancer effects. Pharmaceuticals (Basel). 14:10682021. View Article : Google Scholar : PubMed/NCBI | |
Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu ST and Yu DS: The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol Lett. 18:6869–6876. 2019.PubMed/NCBI | |
Xia RL, Lu Y, Zhu LN, Zhang SF, Zhao FK and Fu CY: Different regulatory pathways are involved in the proliferative inhibition of two types of leukemia cell lines induced by paclitaxel. Oncol Rep. 30:1853–1859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rosière R, Van Woensel M, Mathieu V, Langer I, Mathivet T, Vermeersch M, Amighi K and Wauthoz N: Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm. 501:148–159. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee WH, Loo CY, Traini D and Young PM: Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment. Pharmaceutics. 13:92020. View Article : Google Scholar : PubMed/NCBI | |
Lee WH, Bebawy M, Loo CY, Luk F, Mason RS and Rohanizadeh R: Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J Biomed Nanotechnol. 11:1093–1105. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee WH, Loo CY, Ong HX, Traini D, Young PM and Rohanizadeh R: Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J Biomed Nanotechnol. 12:371–386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Syng-Ai C, Kumari AL and Khar A: Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Mol Cancer Ther. 3:1101–1108. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tapia E, Zatarain-Barrón ZL, Hernández-Pando R, Zarco-Márquez G, Molina-Jijón E, Cristóbal-García M, Santamaría J and Pedraza-Chaverri J: Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine. 20:359–366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Serafini MM, Catanzaro M, Fagiani F, Simoni E, Caporaso R, Dacrema M, Romanoni I, Govoni S, Racchi M, Daglia M, et al: Modulation of Keap1/Nrf2/ARE signaling pathway by Curcuma- and Garlic-Derived Hybrids. Front Pharmacol. 10:15972020. View Article : Google Scholar : PubMed/NCBI | |
Waghray D and Zhang Q: Inhibit or evade multidrug resistance P-Glycoprotein in cancer treatment. J Med Chem. 61:5108–5121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Attia YM, El-Kersh DM, Ammar RA, Adel A, Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, et al: Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact. 315:1088652020. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimifar M, Hasanzadegan Roudsari M, Kazemi SM, Ebrahimi Shahmabadi H, Kanaani L, Alavi SA and Izadi Vasfi M: Enhancing effects of curcumin on cytotoxicity of paclitaxel, methotrexate and vincristine in gastric cancer cells. Asian Pac J Cancer Prev. 18:65–68. 2017.PubMed/NCBI | |
Zhang N, Gao M, Wang Z, Zhang J, Cui W, Li J, Zhu X, Zhang H, Yang DH and Xu X: Curcumin reverses doxorubicin resistance in colon cancer cells at the metabolic level. J Pharm Biomed Anal. 201:1141292021. View Article : Google Scholar : PubMed/NCBI | |
Firouzi Amoodizaj F, Baghaeifar S, Taheri E, Farhoudi Sefidan Jadid M, Safi M, Seyyed Sani N, Hajazimian S, Isazadeh A and Shanehbandi D: Enhanced anticancer potency of doxorubicin in combination with curcumin in gastric adenocarcinoma. J Biochem Mol Toxicol. 34:e224862020. View Article : Google Scholar : PubMed/NCBI | |
Dhandapani KM, Mahesh VB and Brann DW: Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem. 102:522–538. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abbaspour H and Afshar AS: Curcumin inhibits the expression of ornithine decarboxylase and adenosine deaminase genes in MCF-7 human breast cancer cells. Arch Biol Sci. 70:639–645. 2018. View Article : Google Scholar | |
Lee WJ, Jo JH, Jang SI, Jung EJ, Hwang JM, Bae JW, Ha JJ, Kim DH and Kwon WS: The natural flavonoid compound deguelin suppresses sperm (Sus Scrofa) functions through abnormal activation of the PI3K/AKT pathway. Reprod Toxicol. 120:1084262023. View Article : Google Scholar : PubMed/NCBI | |
Lin ZY, Yun QZ, Wu L, Zhang TW and Yao TZ: Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res. 174:1059352021. View Article : Google Scholar : PubMed/NCBI | |
Russell DA, Bridges HR, Serreli R, Kidd SL, Mateu N, Osberger TJ, Sore HF, Hirst J and Spring DR: Hydroxylated rotenoids selectively inhibit the proliferation of prostate cancer cells. J Nat Prod. 83:1829–1845. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kocdor MA, Cengiz H, Ates H and Kocdor H: Inhibition of cancer stem-like phenotype by curcumin and deguelin in CAL-62 anaplastic thyroid cancer cells. Anticancer Agents Med Chem. 19:1887–1898. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, Zhao Y, Li X and Yang S: Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem. 17:2623–2631. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zou P, Zhang J, Xia Y, Kanchana K, Guo G, Chen W, Huang Y, Wang Z, Yang S and Liang G: ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget. 6:5860–5876. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Han L, Tao Z, Zhu Z, Han L, Yang Z, Wang H, Dai D, Wu L, Yuan Z and Chen T: The curcumin derivative WZ35 activates ROS-dependent JNK to suppress hepatocellular carcinoma metastasis. Food Funct. 9:2970–2978. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu W, He Y, Chen H, Zheng B, Huang X, et al: Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J Exp Clin Cancer Res. 38:4602019. View Article : Google Scholar : PubMed/NCBI | |
Koroth J, Nirgude S, Tiwari S, Gopalakrishnan V, Mahadeva R, Kumar S, Karki SS and Choudhary B: Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement Altern Med. 19:2732019. View Article : Google Scholar : PubMed/NCBI | |
Koroth J, Mahadeva R, Ravindran F, Parashar TR, Teja V, Karki SS and Choudhary B: Curcumin derivative 1, 2-bis [(3E, 5E)-3, 5-bis [(2-chlorophenyl) methylene]-4-oxo-1-piperidyl] ethane-1, 2-dione (ST03) induces mitochondria mediated apoptosis in ovarian cancer cells and inhibits tumor progression in EAC mouse model. Transl Oncol. 15:1012802022. View Article : Google Scholar : PubMed/NCBI | |
Haseli S, Pourmadadi M, Samadi A, Yazdian F, Abdouss M, Rashedi H and Navaei-Nigjeh M: A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol Prog. 38:e32802022. View Article : Google Scholar : PubMed/NCBI | |
Hou CH, Lin FL, Hou SM and Liu JF: Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci. 15:17380–17395. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pazouki N, Irani S, Olov N, Atyabi SM and Bagheri-Khoulenjani S: Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Prog Biomater. 11:43–54. 2022. View Article : Google Scholar : PubMed/NCBI | |
Freidus LG, Kumar P, Marimuthu T, Pradeep P and Choonara YE: Theranostic Mesoporous Silica Nanoparticles Loaded With a Curcumin-Naphthoquinone Conjugate for Potential Cancer Intervention. Front Mol Biosci. 8:6707922021. View Article : Google Scholar : PubMed/NCBI | |
Freidus LG, Kumar P, Marimuthu T, Pradeep P, Pillay V and Choonara YE: Synthesis and Properties of CurNQ for the theranostic application in ovarian cancer intervention. Molecules. 25:44712020. View Article : Google Scholar : PubMed/NCBI | |
Zholobak NM, Shcherbakov AB, Ivanova OS, Reukov V, Baranchikov AE and Ivanov VK: Nanoceria-curcumin conjugate: Synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. J Photochem Photobiol B. 209:1119212020. View Article : Google Scholar : PubMed/NCBI | |
Haider T, Pandey V, Banjare N, Gupta PN and Soni V: Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol Rep. 72:1125–1151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang F, Jia X, Yao L and Liu Y: Research mechanism and progress of the natural compound curcumin in treating Alzheimer´s disease. Mini Rev Med Chem. Oct 30–2023.(Epub ahead of print). View Article : Google Scholar | |
Molani-Gol R, Dehghani A and Rafraf M: Effects of curcumin/turmeric supplementation on the liver enzymes, lipid profiles, glycemic index, and anthropometric indices in non-alcoholic fatty liver patients: An umbrella meta-analysis. Phytother Res. Nov 2–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Wu WS, Wu JR and Hu CT: Signal cross talks for sustained MAPK activation and cell migration: The potential role of reactive oxygen species. Cancer Metastasis Rev. 27:303–314. 2008. View Article : Google Scholar : PubMed/NCBI | |
Das L and Vinayak M: Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One. 10:e01240002015. View Article : Google Scholar : PubMed/NCBI | |
Birben E, Sahiner UM, Sackesen C, Erzurum S and Kalayci O: Oxidative stress and antioxidant defense. World Allergy Organ J. 5:9–19. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Bai D, Wei Z, Zhang Y, Huang Y, Deng H and Huang X: Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 14:e02167112019. View Article : Google Scholar : PubMed/NCBI | |
Ghosh P, Vidal C, Dey S and Zhang L: Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci. 21:33632020. View Article : Google Scholar : PubMed/NCBI | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Wu MF, Huang YH, Chiu LY, Cherng SH, Sheu GT and Yang TY: Curcumin induces apoptosis of chemoresistant lung cancer cells via ROS-Regulated p38 MAPK phosphorylation. Int J Mol Sci. 23:82482022. View Article : Google Scholar : PubMed/NCBI | |
He F, Antonucci L and Karin M: NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis. 41:405–416. 2020. View Article : Google Scholar : PubMed/NCBI | |
Karthikeyan A, Senthil N and Min T: Nanocurcumin: A promising candidate for therapeutic applications. Front Pharmacol. 11:4872020. View Article : Google Scholar : PubMed/NCBI | |
Safavy A, Raisch KP, Mantena S, Sanford LL, Sham SW, Krishna NR and Bonner JA: Design and development of water-soluble curcumin conjugates as potential anticancer agents. J Med Chem. 50:6284–6288. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, et al: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 10:6847–6854. 2004. View Article : Google Scholar : PubMed/NCBI |