1
|
Petersen PE: Oral cancer prevention and
control-the approach of the world health organization. Oral Oncol.
45:454–460. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Prince ME, Sivanandan R, Kaczorowski A,
Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF and Ailles
LE: Identification of a subpopulation of cells with cancer stem
cell properties in head and neck squamous cell carcinoma. Proc Natl
Acad Sci. 104:973–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kidwai F, Costea DE, Hutchison I and
Mackenzie I: The effects of CD44 down-regulation on stem cell
properties of head and neck cancer cell lines. J Oral Pathol Med.
42:682–690. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kalish ED, Iida N, Moffat FL and
Bourguignon LY: A new CD44v3-containing isoform is involved in
tumor cell growth and migration during human breast carcinoma
progression. Front Biosci. 4:A1–A8. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hurt EM, Kawasaki BT, Klarmann GJ, Thomas
SB and Farrar WL: CD44+CD24- prostate cells are early cancer
progenitor/stem cells that provide a model for patients with poor
prognosis. Br J Cancer. 98:756–765. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ma F, Li H, Wang H, Shi X, Fan Y, Ding X,
Lin C, Zhan Q, Qian H and Xu B: Enriched CD44+/CD24- population
drives the aggressive phenotypes presented in triple-negative
breast cancer (TNBC). Cancer Lett. 353:153–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Todoroki K, Ogasawara S, Akiba J, Nakayama
M, Naito Y, Seki N, Kusukawa J and Yano H: CD44v3+/CD24- cells
possess cancer stem cell-like properties in human oral squamous
cell carcinoma. Int J Oncol. 48:99–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ghuwalewala S, Ghatak D, Das P, Dey S,
Sarkar S, Alam N, Panda CK and Roychoudhury S: CD44highCD24low
molecular signature determines the cancer stem cell and EMT
phenotype in oral squamous cell carcinoma. Stem Cell Res.
16:405–417. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ghuwalewala S, Ghatak D, Das S, Roy S, Das
P, Butti R, Gorain M, Nath S, Kundu GC and Roychoudhury S:
MiRNA-146a/AKT/β-catenin activation regulates cancer stem cell
phenotype in oral squamous cell carcinoma by targeting CD24. Front
Oncol. 11:6516922021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Clay MR, Tabor M, Owen JH, Carey TE,
Bradford CR, Wolf GT, Wicha MS and Prince ME: Single-marker
identification of head and neck squamous cell carcinoma cancer stem
cells with aldehyde dehydrogenase. Head Neck. 32:1195–1201. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Baillie R, Tan ST and Itinteang T: Cancer
stem cells in oral cavity squamous cell carcinoma: A review. Front
Oncol. 7:1122017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang SJ, Wong G, de Heer AM, Xia W and
Bourguignon LYW: CD44 variant isoforms in head and neck squamous
cell carcinoma progression. Laryngoscope. 119:1518–1530. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bourguignon LYW, Wong G, Earle C and Chen
L: Hyaluronan-CD44v3 interaction with Oct4-Sox2-nanog promotes
miR-302 expression leading to self-renewal, clonal formation, and
cisplatin resistance in cancer stem cells from head and neck
squamous cell carcinoma. J Biol Chem. 287:32800–32824. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K and Jia
C: CD44V3, an alternatively spliced form of CD44, promotes
pancreatic cancer progression. Int J Mol Sci. 23:120612022.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pirruccello SJ and LeBien TW: The human B
cell-associated antigen CD24 is a single chain sialoglycoprotein. J
Immunol. 136:3779–3784. 1986. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fischer GF, Majdic O, Gadd S and Knapp W:
Signal transduction in lymphocytic and myeloid cells via CD24, a
new member of phosphoinositol-anchored membrane molecules. J
Immunol. 144:638–641. 1990. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vesuna F, Lisok A, Kimble B and Raman V:
Twist modulates breast cancer stem cells by transcriptional
regulation of CD24 expression. Neoplasia. 11:1318–1328. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Dunn GP, Bruce AT, Ikeda H, Old LJ and
Schreiber RD: Cancer immunoediting: From immunosurveillance to
tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Economopoulou P, Agelaki S, Perisanidis C,
Giotakis EI and Psyrri A: The promise of immunotherapy in head and
neck squamous cell carcinoma. Ann Oncol. 27:1675–1685. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang S, Bai X and Shan F: The progress
and confusion of anti-PD1/PD-L1 immunotherapy for patients with
advanced non-small cell lung cancer. Int Immunopharmacol.
80:1062472020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu J, Chen Z, Li Y, Zhao W, Wu J and
Zhang Z: PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy.
Front Pharmacol. 12:7317982021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Blank C, Gajewski TF and Mackensen A:
Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T
cells as a mechanism of immune evasion: Implications for tumor
immunotherapy. Cancer Immunol Immunother. 54:307–314. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ferris RL: Immunology and immunotherapy of
head and neck cancer. J Clin Oncol. 33:3293–3304. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Maruse Y, Kawano S, Jinno T, Matsubara R,
Goto Y, Kaneko N, Sakamoto T, Hashiguchi Y, Moriyama M, Toyoshima
T, et al: Significant association of increased PD-L1 and PD-1
expression with nodal metastasis and a poor prognosis in oral
squamous cell carcinoma. Int J Oral Max Surg. 47:836–845. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lenouvel D, González-Moles MÁ, Ruiz-Ávila
I, Gonzalez-Ruiz L, Gonzalez-Ruiz I and Ramos-García P: Prognostic
and clinicopathological significance of PD-L1 overexpression in
oral squamous cell carcinoma: A systematic review and comprehensive
meta-analysis. Oral Oncol. 106:1047222020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ferris RL, Blumenschein G Jr, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of
the head and neck. New Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Burtness B, Harrington KJ, Greil R,
Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane
P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy
versus cetuximab with chemotherapy for recurrent or metastatic
squamous cell carcinoma of the head and neck (KEYNOTE-048): A
randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee Y, Shin JH, Longmire M, Wang H, Kohrt
HE, Chang HY and Sunwoo JB: CD44+ cells in head and neck squamous
cell carcinoma suppress t-cell-mediated immunity by selective
constitutive and inducible expression of PD-L1. Clin Cancer Res.
22:3571–3581. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen L, Yang QC, Li YC, Yang LL, Liu JF,
Li H, Xiao Y, Bu LL, Zhang WF and Sun ZJ: Targeting CMTM6
suppresses stem cell-like properties and enhances antitumor
immunity in head and neck squamous cell carcinoma. Cancer Immunol
Res. 8:179–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang C, Li Y, Jia L, Kim JK, Li J, Deng P,
Zhang W, Krebsbach PH and Wang CY: CD276 expression enables
squamous cell carcinoma stem cells to evade immune surveillance.
Cell Stem Cell. 28:1597–1613.e7. 2021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Geum DH, Hwang DS, Lee CH, Cho SD, Jang
MA, Ryu MH and Kim UK: PD-L1 expression correlated with
clinicopathological factors and akt/stat3 pathway in oral SCC. Life
(Basel). 12:2382022.PubMed/NCBI
|
32
|
Yamamoto E, Kohama G, Sunakawa H, Iwai M
and Hiratsuka H: Mode of invasion, bleomycin sensitivity, and
clinical course in squamous cell carcinoma of the oral cavity.
Cancer. 51:2175–2180. 1983. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Almozyan S, Colak D, Mansour F, Alaiya A,
Al-Harazi O, Qattan A, Al-Mohanna F, Al-Alwan M and Ghebeh H: PD-L1
promotes OCT4 and Nanog expression in breast cancer stem cells by
sustaining PI3K/AKT pathway activation. Int J Cancer.
141:1402–1412. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wei F, Zhang T, Deng SC, Wei JC, Yang P,
Wang Q, Chen ZP, Li WL, Chen HC, Hu H and Cao J: PD-L1 promotes
colorectal cancer stem cell expansion by activating HMGA1-dependent
signaling pathways. Cancer Lett. 450:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu Y, Dutta P, Clayton S, McCloud A and
Vadgama JV: Elevated baseline serum PD-L1 level may predict poor
outcomes from breast cancer in African-American and hispanic women.
J Clin Med. 11:2832022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao L, Guo Q, Li X, Yang X, Ni H, Wang T,
Zhao Q, Liu H, Xing Y, Xi T and Zheng L: MiR-873/PD-L1 axis
regulates the stemness of breast cancer cells. EBioMedicine.
41:395–407. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha
JH, Chen CT, Liao HW, Kuo CW, Khoo KH, et al: STT3-dependent PD-L1
accumulation on cancer stem cells promotes immune evasion. Nat
Commun. 9:19082018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Judd J, Karim NA, Khan H, Naqash AR, Baca
Y, Xiu J, VanderWalde AM, Mamdani H, Raez LE, Nagasaka M, et al:
Characterization of KRAS mutation subtypes in non-small cell lung
cancer. Mol Cancer Ther. 20:2577–2584. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yin F, Wang J, Zhao K, Xin C, Shi Y, Zeng
X, Xu H, Li J and Chen Q: The significance of PA28γ and U2AF1 in
oral mucosal carcinogenesis. Oral Dis. 26:53–61. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Goldschmid H, Kluck K, Ball M, Kirchner M,
Allgäuer M, Winter H, Herth F, Heußel CP, Pullamsetti SS, Savai R,
et al: Spatial profiling of the microenvironment reveals low
intratumoral heterogeneity and STK11-associated immune evasion in
therapy-naïve lung adenocarcinomas. Lung Cancer. 180:1072122023.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Theodoraki MN, Matsumoto A, Beccard I,
Hoffmann TK and Whiteside TL: CD44v3 protein-carrying tumor-derived
exosomes in HNSCC patients' plasma as potential noninvasive
biomarkers of disease activity. Oncoimmunology. 9:17477322020.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim TS, Gorski SA, Hahn S, Murphy KM and
Braciale TJ: Distinct dendritic cell subsets dictate the fate
decision between effector and memory CD8+ T cell differentiation by
a CD24-dependent mechanism. Immunity. 40:400–413. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xiao X, Lao XM, Chen MM, Liu RX, Wei Y,
Ouyang FZ, Chen DP, Zhao XY, Zhao Q, Li XF, et al: PD-1hi
identifies a novel regulatory B-cell population in human hepatoma
that promotes disease progression. Cancer Discov. 6:546–559. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Mirhashemi M, Ghazi N, Saghravanian N,
Taghipour A and Mohajertehran F: Evaluation of CD24 and CD44 as
cancer stem cell markers in squamous cell carcinoma and epithelial
dysplasia of the oral cavity by q- RT-PCR. Dent Res J (Isfahan).
17:208–212. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hall JS, Taylor J, Valentine HR, Irlam JJ,
Eustace A, Hoskin PJ, Miller CJ and West CM: Enhanced stability of
microRNA expression facilitates classification of FFPE tumour
samples exhibiting near total mRNA degradation. Br J Cancer.
107:684–694. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
de Moraes FP, Lourenço SV, Ianez RCF, de
Sousa EA, Silva MM, Damascena AS, Kowalski LP, Soares FA and
Coutinho-Camillo CM: Expression of stem cell markers in oral cavity
and oropharynx squamous cell carcinoma. Oral Surg Oral Med Oral
Pathol Oral Radiol. 123:113–122. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mirhashemi M, Sadeghi M, Ghazi N,
Saghravanian N, Dehghani M and Aminian A: Prognostic value of CD44
expression in oral squamous cell carcinoma: A meta-analysis. Ann
Diagn Pathol. 67:1522132023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nocini R, Vianini M, Girolami I, Calabrese
L, Scarpa A, Martini M, Morbini P, Marletta S, Brunelli M, Molteni
G, et al: PD-L1 in oral squamous cell carcinoma: A key biomarker
from the laboratory to the bedside. Clin Exp Dent Res. 8:690–698.
2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Oliveira LR, Oliveira-Costa JP, Araujo IM,
Soave DF, Zanetti JS, Soares FA, Zucoloto S and Ribeiro-Silva A:
Cancer stem cell immunophenotypes in oral squamous cell carcinoma.
J Oral Pathol Med. 40:135–142. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
McLaughlin J, Han G, Schalper KA,
Carvajal-Hausdorf D, Pelekanou V, Rehman J, Velcheti V, Herbst R,
LoRusso P and Rimm DL: Quantitative assessment of the heterogeneity
of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol.
2:1–9. 2015.
|
52
|
Liu Y, Dong Z, Jiang T, Hou L, Wu F, Gao
G, He Y, Zhao J, Li X, Zhao C, et al: Heterogeneity of PD-L1
expression among the different histological components and
metastatic lymph nodes in patients with resected lung adenosquamous
carcinoma. Clin Lung Cancer. 19:e421–e430. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Athanassiou-Papaefthymiou M, Shkeir O, Kim
D, Divi V, Matossian M, Owen JH, Czerwinski MJ, Papagerakis P,
McHugh J, Bradford CR, et al: Evaluation of CD44 variant expression
in oral, head and neck squamous cell carcinomas using a triple
approach and its clinical significance. Int J Immunopathol
Pharmacol. 27:337–349. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Boxberg M, Götz C, Haidari S, Dorfner C,
Jesinghaus M, Drecoll E, Boskov M, Wolff KD, Weichert W, Haller B
and Kolk A: Immunohistochemical expression of CD44 in oral squamous
cell carcinoma in relation to histomorphological parameters and
clinicopathological factors. Histopathology. 73:559–572. 2018.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Dave K, Ali A and Magalhaes M: Increased
expression of PD-1 and PD-L1 in oral lesions progressing to oral
squamous cell carcinoma: A pilot study. Sci Rep. 10:97052020.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Straub M, Drecoll E, Pfarr N, Weichert W,
Langer R, Hapfelmeier A, Götz C, Wolff KD, Kolk A and Specht K:
CD274/PD-L1 gene amplification and PD-L1 protein expression are
common events in squamous cell carcinoma of the oral cavity.
Oncotarget. 7:12024–12034. 2016. View Article : Google Scholar : PubMed/NCBI
|